Eco-Friendly Cooking Solutions: Design and Evaluation of Stoves and Briquettes Made from Coal Fines and Sawdust
DOI:
https://doi.org/10.59846/ajbas.v3i1.640Keywords:
Coal fines, Sawdust, Cooking stove, Briquettes, Combustion efficiency, DemineralizationAbstract
Reliance on traditional biomass and fossil fuels for cooking in developing regions poses significant environmental and health challenges. This study addresses the urgent need for sustainable and efficient cooking solutions by developing a novel cooking stove and briquettes using coal fines (CFN) and sawdust (SDT) blends. The primary objective is to enhance fuel efficiency and reduce emissions, thereby providing a cleaner and more affordable cooking alternative. To achieve this, CFN and SDT were blended in varying ratios to produce briquettes, which were then subjected to a series of physical and chemical characterizations, including proximate and ultimate analysis, calorific value (CV) determination, feedstock morphology scrutiny, elemental composition analysis, functional group determination and compressive strength tests. The developed briquettes were used in a specially designed cooking stove, and the performance was evaluated based on combustion efficiency, emission levels, and thermal output. The results indicate that the optimal blend of CFN and SDT significantly improves the CV and combustion efficiency of the briquettes, while reducing harmful emissions such as carbon monoxide and particulate matter. The optimized cooking stove demonstrated superior thermal efficiency and faster cooking times compared to traditional stoves, highlighting the potential for significant fuel savings and environmental benefits. This study has far-reaching implication as it is capable of addressing deforestation, greenhouse gas emissions and poor indoor air quality, thereby contributing to public health and environmental conservation.
References
Abdullahi, L., Abubakar, M., & Ndagi, B. (2021). Effect of compaction pressure and biomass type (rice husk and sawdust) on some physical and combustion properties of briquettes. Arid Zone Journal of Engineering, Technology & Environment, 17(1), 61–70.
Adeleke, A A, Odusote, J. K., Ikubanni, P. P., Orhadahwe, T. A., & Lasode, O. A. (2021). Ash analyses of bio‑coal briquettes produced using blended binder. Scientific Reports, 1–9. https://doi.org/10.1038/s41598-020-79510-9
Adeleke, A A, Odusote, J. K., Lasode, O. A., Ikubanni, P. P., Malathi, M., & Paswan, D. (2019). Densification of coal fines and mildly torrefied biomass into composite fuel using different organic binders. Heliyon, 5, 1–7. https://doi.org/10.1016/j.heliyon.2019.e02160
Aditya, A., Suresh, A., Sriramoju, S. K., Dash, P. S., Pati, S., Padmanabhan, N. P. H., Suresh, A., Sriramoju, S. K., Dash, P. S., & Pati, S. (2018). Optimization study of sodium hydroxide consumption in the coal demineralization process. Mineral Processing and Extractive Metallurgy Review, 1–8. https://doi.org/10.1080/08827508.2017.1415208
Ajiboye, T., Abdulkareem, S., & Anibijuwon, A. O. Y. (2016). Investigation of mechanical properties of briquette product of sawdust-charcoal as a potential domestic energy source. Journal of Applied Science and Environmental Management, 20(4), 1179–1188.
Akogun, Ayodeji, Opeyemi, Waheed, Adekojo, Mufutau, Olasunkanmi, & Salami. (2020a). Physical and combustion indices of thermally treated cornhusk and sawdust briquettes for heating applications in Nigeria. Journal of Natural Fibers, 478, 1–17. https://doi.org/10.1080/15440478.2020.1764445
Akogun, O., A, Waheed, M. A., Ismaila, S. O., & Olawale, U. (2020b). Co-briquetting characteristics of cassava peel with sawdust at different torrefaction pretreatment conditions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–19. https://doi.org/10.1080/15567036.2020.1752333
Akolgo, Ayine, G., Awafo, A, E., Essandoh, Osei, E., Owusu, Achaw, P., Uba, Felix, Adu-poku, & A, K. (2021). Assessment of the potential of charred briquettes of sawdust, rice and coconut husks: Using water boiling and user acceptability tests. Scientific African, 12, 1–8. https://doi.org/10.1016/j.sciaf.2021.e00789
Akpenpuun, T., Ra, S., Ao, A., Om, A., J, S., & M, D. (2020). Physical and combustible properties of briquettes produced from a combination of groundnut shell, rice husk, sawdust and wastepaper using starch as a binder. Journal of Applied Science and Environmental Management, 24(1), 171–177.
Aliyu, M., Mohammed, I. S., Usman, M., Musa, S., & Igbetua, I. J. (2020). Production of composite briquettes (orange peels and corn cobs) and determination of its fuel properties. Agricultural Engineering International, 22(2), 1–13.
Anna Brunerová, Roubík, H., & Brožek, M. (2018). Bamboo fiber and sugarcane skin as a bio- briquette fuel. Energies, 1–20. https://doi.org/10.3390/en11092186
Bantu, A. A., Nuwagaba, G., Kizza, S., & Turinayo, Y. K. (2018). Design of an improved cooking stove using high density heated rocks and heat retaining techniques. Journal of Renewable Energy, 1–10. https://doi.org/https://doi.org/10.1155/2018/9620103
Barma, S. D., Sathish, R., & Baskey, P. K. (2018). Ultrasonic-assisted cleaning of Indian low- grade coal for clean and sustainable energy. Journal of Cleaner Production, 1–36. https://doi.org/10.1016/j.jclepro.2018.06.030
Behera, S. K., & Chakraborty, S. (2018). Demineralization mechanism and influence of parameters on high ash Indian coal by chemical leaching of acid and alkali solution. International Journal of Coal Science & Technology, 5(2), 142–155. https://doi.org/10.1007/s40789-018-0208-3
Behera, S. K., Chakraborty, S., & Meikap, B. C. (2017). Chemical demineralization of high ash Indian coal by using alkali and acid solutions. Fuel, 196, 102–109. https://doi.org/10.1016/j.fuel.2017.01.088
Bello, R. S., & Onilude, M. A. (2020). Physico-mechanical characteristics of high density briquettes produced from composite sawdust. Journal of Applied Science and Environmental Management, 24(5), 779–787. https://doi.org/https://dx.doi.org/10.4314/jasem.v24i5.8
Bilen, M. (2019). Proximate and ultimate analysis before and after physical & chemical demineralization. Earth and Environmental Science, 362, 1–8. https://doi.org/10.1088/1755-1315/362/1/012092
Bonsu, Osei, Betty, Takase, Mohammed, Mantey, & Jones. (2020). Preparation of charcoal briquette from palm kernel shells: case study in Ghana. Heliyon, 6(10), 1–8. https://doi.org/10.1016/j.heliyon.2020.e05266
Borowski, G., Stępniewski, W., & Wójcik-oliveira, K. (2017). Effect of starch binder on charcoal briquette properties. International Agrophysics, 31, 571–574. https://doi.org/10.1515/intag-2016-0077
Brenda, M. G., Innocent, E. E., Daniel, O., & Abdu, Y. A. (2017). Performance of biomass briquettes as an alternative energy source compared to wood charcoal in Uganda. International Journal of Scientific Engineering and Science, 1(6), 55–60.
Brunerov, Anna, Roub, Hynek, Brožek, Milan, Haryanto, Agus, Hasanudin, & Udin. (2019). Valorization of bio-briquette fuel by using spent coffee ground as an external additive. Energies, 1–15.
Brunerová, A., Malaťák, J., Müller, M., Valášek, P., & Roubík, H. (2017). Tropical waste biomass potential for solid biofuels production. Agronomy Research, 15(2), 359–368.
Burenina, O. N., Nikolaeva, L. A., & Solovev, T. M. (2019). Development of technologies for processing large-tonnage accumulations of oil sludge and wood waste with obtaining binders to improve the quality of household briquetted fuel based on brown coal. IOP Conference Series: Earth and Environmental Science, 272(2), 1–6. https://doi.org/10.1088/1755-1315/272/2/022146
Okonkwo Ugochukwu C, O. U., Agu Chukwuemerie N, A. C., Samuel, A., & Sinebe Jude E, S. J. (2017). Proximate analysis and performance evaluation of selected blends of biomass briquettes. Journal of Engineering and Applied Sciences, 10, 144–161.
Dai, S., & Finkelman, R. B. (2017). Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology, 1–37. https://doi.org/10.1016/j.coal.2017.06.005
Davies, R. M., Davies, O. A., & Mohammed, U. S. (2013). Combustion characteristics of traditional energy sources and water hyacinth briquettes. International Journal of Scientific Research in Environmental Sciences (IJSRES), 1(7), 144–151.
Demirel, & Bahadir. (2018). Effect of particle size on surface smoothness of bio-briquettes produced from agricultural residues. Manufacturing Technology, 1–7. https://doi.org/10.21062/ujep/170.2018/a/1213-2489/MT/18/5/742
Elehinafe, F B, Okedere, O. B., & Odunlami, O. (2019). Proximate analysis of the properties of some southwestern Nigeria sawdust of different wood species. International Journal of Civil Engineering and Technology (IJCIET), 10(3), 51–59.
Elehinafe, Francis B, Okedere, O. B., Fakinle, B. S., & Jacob, A. (2017). Assessment of sawdust of different wood species in Southwestern Nigeria as source of energy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–5. https://doi.org/10.1080/15567036.2017.1384869
Elinge, C. ., Birnin-Yauri, A. ., Senchi, D. ., A.R, I., Ajakaye, J., Yusuf, A., & Abubakar, R. . (2019). Studies on the combustion profile of briquettes produced from carbonized rice husk using different binders at moderate temperature and die pressure. International Journal of Advanced Academic Research, 5(3), 70–77.
Fedorova, N. I., Dudnikova, Y. N., & Zykov, I. Y. (2018). Influence of the demineralization of naturally oxidized coal on sorbent texture. Coke and Chemistry, 61(8), 297–300. https://doi.org/10.3103/S1068364X18080045
Finkelman, R. B., Dai, S., & French, D. (2019). The importance of minerals in coal as the hosts of chemical elements: A review. International Journal of Coal Geology, 212, 1–17. https://doi.org/10.1016/j.coal.2019.103251
Francis, O. (2015). Evaluation of the effect of palm oil mill sludge on the properties of sawdust briquette. Renewable and Sustainable Energy Reviews, 52, 1749–1758. https://doi.org/10.1016/j.rser.2015.08.001
Ghorai, S., Ghosh, B., Chandaliya, V. K., Singh, R., Dash, P. S., & Mal, D. (2019). Difference in structural chemistry of non-coking and coking coal using acid treatment demineralization technique. International Journal of Coal Preparation and Utilization, 1–21. https://doi.org/10.1080/19392699.2019.1664482
Ikelle, I. I., & Ivoms, O. S. P. (2018). Determination of the heating ability of coal and corn cob briquettes. Journal of Applied Chemistry (IOSR-JAC), 7(2), 77–82. https://doi.org/10.9790/5736-07217782
Isobaev, M. D., Davlatnazarova, M. D., & Mingboev, S. A. (2019). Acid demineralization and activation of coal sorbents. Solid Fuel Chemistry, 53(3), 172–174. https://doi.org/10.3103/S0361521919030042
Jaya, T., PhD, Engineer, D. S., Fillerup, Eric, & Falls, I. (2020). In the field briquetting characteristics of woody and herbaceous biomass blends: Impact on physical properties, chemical composition, and calorifc value. Biofuels, Bioproducts and Biorefining., 1–20. https://doi.org/10.1002/bbb.2121
Khatib, M. I., Ahmed, R. Z., Uddin, M. S., Abdul Rahman, M., Shareef, M. R., Akber, S., Khan, M., & Shaikh, S. (2020). Design and fabrication of 5 ton hydraulic press machine.
International Journal of Scientific Research in Science, Engineering and Technology, 7(2), 1–11. https://doi.org/10.32628/ijsrset207210
Kpalo, Yusuf, Sunday, Zainuddin, Faiz, Mohamad, Manaf, Abd, & Latifah. (2020). Production and characterization of hybrid briquettes from corncobs and oil palm trunk bark under a low pressure densification technique. Sustainability, 1–16.
Kumar, A., Singh, A. K., Singh, P. K., Singh, A. L., & Jha, M. K. (2017). Demineralization study of high ash Permian coal with Pseudomonas mendocina strain B6-1: A case study of South Karanpura coalfield, Jharkhand, India. Energy and Fuels, 1–23. https://doi.org/10.1021/acs.energyfuels.7b02562
Lela, B, Barišic, M., & Nizˇetic, S. (2015). Cardboard/sawdust briquettes as biomass fuel: physical – mechanical and thermal characteristics. Waste Management, 1–10. https://doi.org/10.1016/j.wasman.2015.10.035
Lubwama, M., Yiga, V. A., & Lubwama, H. N. (2020). Effects and interactions of the agricultural waste residues and binder type on physical properties and calorific values of carbonized briquettes. Biomass Conversion and Biorefinery, 1–21.
Lubwama, M., Yiga, V. A., Muhairwe, F., & Kihedu, J. (2019). Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources. Renewable Energy, 1–37. https://doi.org/10.1016/j.renene.2019.10.085
Mandal, S., Kumar, G. V. P., & Tanna, T. K. B. H. R. (2018). Briquetting of Pine Needles (pinus roxburgii) and their physical, handling and combustion properties. Waste and Biomass Valorization, 1–10. https://doi.org/10.1007/s12649-018-0239-4
Manoj, B. (2016). A comprehensive analysis of various structural parameters of Indian coals with the aid of advanced analytical tools. International Journal of Coal Science & Technology, 3, 1–13. https://doi.org/10.1007/s40789-016-0134-1
Manouchehrinejad, M., Yue, Y., Armond, R., Morais, L. De, Macedo, L., & Souza, O. (2018). Densification of thermally treated energy cane and napier grass. Bioenergy Research, 1–13. https://doi.org/10.1007/s12155-018-9921-4
Manyuchi, M. M., Mbohwa, C., & Muzenda, E. (2018). Value addition of coal fines and sawdust to briquettes using molasses as a binder. South African Journal of Chemical Engineering, 26, 70–73. https://doi.org/10.1016/j.sajce.2018.09.004
Massaro, M. M., Son, S. F., & Groven, L. J. (2014). Mechanical, pyrolysis, and combustion characterization of briquetted coal fines with municipal solid waste plastic (MSW) binders. Fuel, 115, 62–69. https://doi.org/10.1016/j.fuel.2013.06.043
Miao, Z., Zhang, P., Li, M., Wan, Y., & Meng, X. (2019). Briquette preparation with biomass binder. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1–11. https://doi.org/10.1080/15567036.2019.1682722
Mketo, N., Nomngongo, P. N., & Ngila, J. C. (2017). Rapid total sulphur reduction in coal samples using various dilute alkaline leaching reagents under microwave heating: preventing sulphur emissions during coal processing. Environmental Science Pollution Research, 1–7. https://doi.org/10.1007/s11356-017-9632-y
Mohammed, Y. S., Mustafa, M. W., Bashir, N., Ogundola, M. A., & Umar, U. (2014). Sustainable potential of bioenergy resources for distributed power generation development in Nigeria. Renewable and Sustainable Energy Reviews, 34, 361–370. https://doi.org/10.1016/j.rser.2014.03.018
Moreno, A. I., Font, R., & Conesa, J. A. (2016). Physical and chemical evaluation of furniture waste briquettes. Waste Management, 1–8. https://doi.org/10.1016/j.wasman.2016.01.048
Motghare, K. A., Labhsetwar, N. K., Rathod, A. P., Waghmare, S. S., & K.L.Wasewar. (2015). Performance Evaluation and Heat transfer studies on Biomass Gasifier cook-stove. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 4(5), 352–361.
Muazu, R. I., & Stegemann, J. A. (2017). Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel, 194, 339–347. https://doi.org/10.1016/j.fuel.2017.01.019
Musa, U., Ishaq, K., Onoduku, & Shehu, U. (2016). Characterization and ash chemistry of selected Nigerian coals for solid fuel combustion. Petroleum and Coal, 56(6), 1–10.
Ndindeng, S. A., Mbassi, J. E. G., Mbacham, W. F., Manful, J., Graham-acquaah, S., Moreira, J., Dossou, J., & Futakuchi, K. (2015). Quality optimization in briquettes made from rice milling by-products. Energy for Sustainable Development, 29, 24–31. https://doi.org/10.1016/j.esd.2015.09.003
Nwabue, F. I., Unah, U., & Itumoh, E. J. (2017). Production and characterisation of smokeless bio-coal briquettes incorporating plastic waste materials. Environmental Technology & Innovation, 1–26. https://doi.org/10.1016/j.eti.2017.02.008
Ogunwusi, A. A. (2014). Wood waste generation in the forest industry in Nigeria and prospects for its industrial utilization. Civil and Environmental Research, 6, 62–70.
Okino, J., Komakech, A. J., Wanyama, J., Ssegane, H., Olomo, E., & Omara, T. (2021). Performance characteristics of a cooking stove improved with sawdust as an insulation material. Journal of Renewable Energy, 1–12. https://doi.org/https://doi.org/10.1155/2021/9969806
Okoro, S. E., Asadu, C. O., & Maxwell, I. (2018). Demineralization of Enugu coal: effect of acid type and acid concentration. Journal of the Chinese Advanced Materials Society, 6(4), 573– 604. https://doi.org/10.1080/22243682.2018.1522971
Onoduku, U. S. (2014). Chemistry of maiganga coal deposit, upper benue trough, northeastern Nigeria. Journal of Geosciences and Geomatics, 2(3), 80–84. https://doi.org/10.12691/jgg- 2-3-2
Oyejide, O. J., Okwu, M. O., & Tartibu, L. K. (2019). Adaptive design and development of a modular water hyacinth briquette stove. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–19. https://doi.org/10.1080/15567036.2019.1675808
Patil, G. (2019). The possibility study of briquetting agricultural wastes for alternative energy. Indonesian Journal of Forestry Research, 6(2), 133–139. https://doi.org/10.20886/ijfr.2019.6.2.133-139
Pontevedra, V., Kongprasert, N., Wangphanich, P., Jutilarptavorn, A., Kongprasert, N., Wangphanich, P., & Jutilarptavorn, A. (2019). Charcoal briquettes from madan wood waste as an alternative energy in Thailand. Procedia Manufacturing, 30, 128–135. https://doi.org/10.1016/j.promfg.2019.02.019
Rahaman, S. A., & Salam, P. A. (2017). Characterization of cold densified rice straw briquettes and the potential use of sawdust as binder. Fuel Processing Technology, 158, 9–19. https://doi.org/10.1016/j.fuproc.2016.12.008
Rahman, M., Pudasainee, D., & Gupta, R. (2017). Review on chemical upgrading of coal: Production processes, potential applications and recent developments. Fuel Processing Technology, 158, 35–56. https://doi.org/10.1016/j.fuproc.2016.12.010
Rajput, S. P., & Thorat, B. N. (2019). Recovered polyvinyl alcohol as an alternative binder for the production of metallurgical quality coke breeze briquettes. International Journal of Coal Preparation and Utilization, 1–11. https://doi.org/10.1080/19392699.2019.1619558
Rapheal, I. A., Moki, E. C., Gusau, H. L., & Abimbola, A. I. (2018). Effect of binder on physico- chemical properties of fuel briquettes produced from watermelon peels. AASCIT Journal of Energy, 5(2), 1–6. http://www.aascit.org/journal/energy
Rejdak, M., Robak, J., Czardybon, A., Ignasiak, K., & Fudała, P. (2020). Research on the production of composite fuel on the basis of fine-grained coal fractions and biomass— the impact of process parameters and the type of binder on the quality of briquettes produced. Minerals, 10(1), 1–12. https://doi.org/10.3390/min10010031
Rimmer, S., & Wei, Q. (2018). Acid solubility and affinities of trace elements in the high-Ge coals from Wulantuga (Inner Mongolia) and Lincang (Yunnan Province), China. International Journal of Coal Geology, 178, 39–55. https://doi.org/10.1016/j.coal.2017.04.011
Rizkiana, J., Ananda, R. F., Kamilah, N., & Nur, G. A. (2020). The effect of demineralization towards gasification performance of low-rank coal. Materials Science and Engineering, 823, 1–9. https://doi.org/10.1088/1757-899X/823/1/012023
Sajadi, A., Dashti, A., Ahmadijokani, F., Hu, J., & Mohammadi, A. H. (2021). Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation. Renewable Energy, 179, 550–562. https://doi.org/10.1016/j.renene.2021.07.003
Sari, E., Khatab, U., Rahman, E. D., Panindi, A., & Andriyati, E. (2020). Design of biomass briquette stoves: performance based on mixed of durian bark, coconut shell and palm shells as materials of bio briquette. Materials Science and Engineering, 990, 1–8. https://doi.org/10.1088/1757-899X/990/1/012013
Sen, R., Wiwatpanyaporn, S., & Annachhatre, A. P. (2016). Influence of binders on physical properties of fuel briquettes produced from cassava rhizome waste. International Journal Environment and Waste Management, 17(2), 158–175.
Severy, M. A., Chamberlin, C. E., Eggink, A. J., & Jacobson, A. E. (2018). Demonstration of a pilot-scale plant for biomass torrefaction and briquetting. Waste to Wisdom, 34(1), 85–98.
Sharma, A., & Matsumura, A. (2019). A comparative study on demineralization of coals by acid- washing and solvent-extraction methods for low temperature catalytic coal gasification application. Carbon Resources Conversion, 2(3), 175–181. https://doi.org/10.1016/j.crcon.2019.09.001
Song, Q., Zhao, H., Jia, J., Yang, L., Lv, W., Gu, Q., & Shu, X. (2019). Effects of demineralization on the surface morphology, microcrystalline and thermal transformation characteristics of coal. Journal of Analytical and Applied Pyrolysis, 1–12. https://doi.org/10.1016/j.jaap.2019.104716
Sutrisno, Anggono, W., Suprianto, F. D., Kasrun, A. W., & Siahaan, I. H. (2017). The effects of particle size and pressure on the combustion characteristics of cerbera manghasleaf briquettes. Journal of Engineering and Applied Sciences, 12, 1–18.
Tom, S., Shuma, M. R., Madyira, D. M., & Kaymakci, A. (2016). Performance Testing of a Multi-layer Biomass Briquette Stove. Renewable and Sustainable Energy Reviews, 1–6.
Trubetskaya, A., Leahy, J. J., Yazhenskikh, E., Müller, M., Layden, P., Johnson, R., Ståhl, K., & Monaghan, R. F. D. (2019). Characterization of woodstove briquettes from torrefied biomass and coal. Energy, 171, 853–865. https://doi.org/10.1016/j.energy.2019.01.064
Verma, P., & Shukla, S. K. (2019). Performance evaluation of improved cook stove using briquette as fuel. AIP Conference Proceedings, 1–12. https://doi.org/https://doi.org/10.1063/1.5096492
Wang, D., Liu, L., Yuan, Y., Yang, H., Zhou, Y., & Duan, R. (2019). Design and key heating power parameters of a newly-developed household biomass briquette heating boiler. Renewable Energy, 1–19. https://doi.org/10.1016/j.renene.2019.09.081
Yang, I., Cooke-willis, M., Song, B., & Hall, P. (2021). Densification of torrefied Pinus radiata sawdust as a solid biofuel: Effect of key variables on the durability and hydrophobicity of briquettes. Fuel Processing Technology, 214, 1–9. https://doi.org/10.1016/j.fuproc.2020.106719
Yang, Y., Chu, M., Hao, C., & Zhou, L. (2019). Preparation of low silicon ultra clean coal by flotation pretreatment followed by alkali-acid leaching combined process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–16. https://doi.org/10.1080/15567036.2019.1665149
Zhang, L., Li, Z., Yang, Y., Zhou, Y., Kong, B., Li, J., & Si, L. (2016). Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal. Fuel, 184, 418–429. https://doi.org/10.1016/j.fuel.2016.07.002
Zhao, H., Bai, Z., Bai, J., Guo, Z., Kong, L., & Li, W. (2015). Effect of coal particle size on distribution and thermal behavior of pyrite during pyrolysis. Fuel, 148, 145–151.
Zhong, Q., Yang, Y., Li, Q., Xu, B., & Jiang, T. (2017). Coal tar pitch and molasses blended binder for production of formed coal briquettes from high volatile coal. Fuel Processing Technology, 157, 12–19. https://doi.org/10.1016/j.fuproc.2016.11.005
Downloads
Published
Versions
- 28-08-2024 (2)
- 31-07-2024 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Musa Alhassan, Silas Kiman, Muhammad Abdulrazak, Abdulhalim Musa Abubakar, Mohammed Modu Aji
This work is licensed under a Creative Commons Attribution 4.0 International License.