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Abstract 

This research delves into the intricate realm of Finsler geometry, with a particular focus on curvature tensors. The paper aims to establish 

novel identities that govern the expansion of these tensors within the broader context of Finsler space. Through rigorous mathematical 

analysis, we explore the inter relationships between various curvature tensors and their corresponding expansions. The derived identities 

not only deepen our understanding of the intrinsic geometric properties of Finsler spaces but also offer potential applications in fields 

such as physics and engineering where Finsler geometry plays a significant role. This work contributes to the ongoing development of 

Finsler geometry and provides a foundation for future research in this area. The expansion curvature tensor W_ijk^h is an important ge-

ometric object in Finsler spaces. It measures the deviation of the geodesic flow from a parallel flow. In this paper, we investigate some 

identities for the expansion curvature tensor W_ijk^h in Finsler spaces. These identities provide valuable insights into the geometric 

properties of Finsler spaces and can be used to derive new results in Finsler geometry. We investigate some identities between Weyl 

Curvature Tensor W_ijk^h and some other curvature tensors.  

Keywords: Finsler space, Berwald covariant derivative expansion, curvature tensor, identities, geometric properties..

1. Introduction 
Finsler geometry, an extension of Riemannian geometry, pro-
vides a robust framework for investigating spaces with aniso-
tropic characteristics. This paper explores the complexities of 
Finsler spaces, concentrating on the identities governing the ex-
pansion of curvature tensors. By analyzing these identities, we 
seek to illuminate the geometric and algebraic structures inherent 
in Finsler geometry. The examination of curvature tensors in 
Finsler spaces is crucial due to their significance in characterizing 

the intrinsic curvature of these spaces. These tensors embody 
information concerning the deviation of geodesics and the paral-
lel transport of vectors. By scrutinizing the expansion identities 
for curvature tensors, we aspire to uncover profound connections 
among the diverse curvature invariants and to acquire a more 
comprehensive c of the curvature properties of Finsler spaces. 

Furthermore, the findings presented in this paper hold promise 
for applications across diverse domains, including physics, engi-
neering, and computer science. For example, Finsler geometry 

has been utilized in the formulation of relativistic gravity theories 
and in the creation of innovative materials exhibiting anisotropic 
characteristics. Curvature tensors play a pivotal role in differen-
tial geometry. Notable examples of curvature tensors include the 
Riemannian curvature tensor, Weyl projective curvature tensor, 
M-projective curvature tensor, conformal curvature tensor, con-
harmonic curvature tensor, concircular curvature tensor, and P_1-
Curvature tensor. The Riemannian curvature tensor was intro-

duced by Bernhard Riemann in 1854 in his Habilitation vortrag 
"Ueber die Hypothesen, welche der Geometric zuGrundeliegen." 
The conformal curvature tensor is another significant curvature 
tensor with numerous applications in differential geometry. 

In this paper we investigate some identities between Weyl curva-

ture tensor W_ijk^h and some others curvature tensors by using 

Berwald covariant derivative. We first introduce the basic con-

cepts and the relationship between these curvature tensors and 

Weyl curvature tensor W_(ijk )^h, we also introduce the basic 

concepts of Berwald covariant derivative and investigate some 

identities between some important curvature tensors and Weyl 

curvature tensor. Then we derive expansion for Berwald covari-

ant derivative in general form. Finally, we apply this expansion 

and identities some relationships between some curvature tensors 

and Weyl curvature tensor by given some examples. The concept 

of the three-dimensional of Riemannian space with recurrent 

curvature was studied and explored by Rund [18]. In the context 

of recurrent Finsler spaces, the analysis of generalized curvature 

tensors relies on the Berwald curvature tensor, which has been 

discussed by Abdallah [1], AL-Qashbari[6], and others. Proper-

ties of the curvature tensor W_jkh^iwere investigated by Ahsan& 

Ali [4], Hadi[10], Al-Qashbari and Qasem[5], Abu-Donia, 

Shenawy and Abdelhameed[2], and others. Ahsan[23],Ahsan and 

Ali [22] studied on some properties of W-curvature tensor, 

Chagpar, Pokhariyal and Moindi [9] introduced P_1-Curvature 

tensor, Ali and Salman [13] studied some properties of M-

projective curvature tensor. Using Berwald's connection, the co-

variant derivative B_kof a general tensor T_j^ialong the x^k di-

rection is 

B_k T_j^i=∂_k T_j^i-(∂ ̇_r T_j^i ) G_k^r+T_j^r G_rk^i-

T_r^i 〖 G〗_jk^r .    (1.1) 

 

According to reference [7], there exists a relationship between the 

quantities  and  

 
 

https://ojs.abhath-ye.com/index.%20php/OJSRJBAS/about
https://doi.org/10.59846/ajobas.v3i2.673
https://doi.org/10.59846/ajobas.v3i2.673
https://doi.org/10.59846/ajobas.v3i2.673
mailto:Adel_ma71@yahoo.com
mailto:abonowres80@gmail.com


7 Abhath Journal of Basic and Applied Sciences 

    
 
 

(a)  and    (b) .   (1.2) 

Moreover, the covariant derivative of   is given by 

(a) (b) ,   (1.3) 

(a)   and    (b)     (1.4) 

A substantial number of scholars have put forth the following identities in their studies (see [17, 14, 7, 21]). 

 

(a)    and  (b) .    (1.6) 

Also from [16, 13, 7, 20] we have 

        (1.7). 

The outline of this paper is as follows:  

Following the introductory section and the preliminaries section, 

we explore the expansion of any curvature tensor in terms of the 

Berwald covariant derivative. In section2, establish the relation-

ships between the Weyl curvature tensor and other curvature ten-

sors. Subsection3.1 delves into the expansion of the Berwald co-

variant derivative for an arbitrary curvature tensor. Finally, in 

subsection3.2, we analyze the identities introduced in section2 

using the previously described expansion. 

 

2. Preliminaries 

In Finsler geometry, there exists a mathematical relationship be-

tween any two curvature tensors. This paper will explore the specif-

ic relationship between the Weyl curvature tensor and the following 

curvature tensors: 

2.1.Weyl Projective Curvature Tensor  

The Weyl projective curvature tensor serves as a geometric tool for 

describing the curvature of a spacetime or, more broadly, a pseudo-

Riemannian manifold. While closely linked to the Riemann curva-

ture tensor, it exhibits invariance under conformal transformations, 

remaining unchanged even when the manifold's metric is scaled by a 

non-zero function. This property renders the Weyl projective curva-

ture tensor invaluable for studying the geometry of spacetime, espe-

cially in scenarios where the exact spacetime metric remains uncer-

tain. 

Furthermore, the Weyl projective curvature tensor maintains a close 

relationship with the Cotton tensor. The Cotton tensor quantifies the 

shear of curvature, vanishing if and only if the spacetime possesses 

conformal flatness. Consequently, the Weyl projective curvature 

tensor vanishes if and only if the spacetime exhibits local isometry 

to flat spacetime. 

Definition2.1. The Riemannian curvature tensor in terms of Weyl 

projective curvature tensor  is defined as Musavvir Ali, 

Naeem Ahmad and Mohammad Salman (2022) and Zafar and Mu-

savvir (2013). 

   (2.1)  

In the 4-dimensional vector space V over the field F, we have 

 .   (2.2) 

The tensors  , ,  and  satisfy the following 

identities  

c)   ,b)  ,  a)   

(2.3).  d)  ,   

Also, if we suppose that the tensor   and   satisfy the fol-

lowing identities  

         a)        and     b)   .                  (2.4) 

 

2.2. Concircular Curvature Tensor  

The concircular curvature tensor, a geometric entity introduced 

within the field of differential geometry, serves as a quantifier of 

the curvature inherent in spacetime or, more broadly, pseudo-

Riemannian manifolds. It maintains a close association with the 

conformal curvature tensor (alternately referred to as the Weyl 

curvature tensor) and the projective curvature tensor. Notably, the 

concircular curvature tensor vanishes exclusively when the mani-

fold exhibits concircular flatness. 

Definition2.2. The concircular curvature tensor  in a 4-

dimensional spacetime is defined as in Ahsan and Siddiqui (2009). 

                        

(2.5) 
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Also 

                                    

(2.6) 

Combining equations (2.2) and (2.6), we obtain 

   (2.7) 

2.3. -Curvature Tensor 

The P1-curvature tensor, a geometric entity within the realm of 

differential geometry, serves as a quantifier of the curvature inher-

ent in spacetime or, more broadly, pseudo-Riemannian manifolds. 

Its close association with the Ricci curvature tensor and scalar 

curvature is noteworthy. The P1-curvature tensor vanishes exclu-

sively when the manifold exhibits Ricci flatness and possesses 

constant scalar curvature. The tensor 

has been defined by Pokhariyal (1973). 

 

(2

.8) 

We consider the -curvature tensor in the index notation as 

Chagpar, Pokhariyal and Moindi (2021) 

(2.9) 

This can be written as 

(2.10) 

In the 4-dimensional vector space V over the field F, we have 

(2.11) 

If we put (2.2) and (2.11) together, we get 

. (2.12) 

2.4. Conformal Curvature Tensor  

The conformal curvature tensor, alternatively identified as the 

Weyl curvature tensor, represents a geometric entity introduced 

within the realm of differential geometry. Serving as a quantifier 

of curvature within spacetime or, more expansively, pseudo-

Riemannian manifolds, it mirrors the tidal force experienced by a 

body traversing a geodesic path, akin to the Riemann curvature 

tensor. However, the Weyl tensor differentiates itself from the 

Riemann curvature tensor by excluding information regarding 

volumetric changes, focusing exclusively on the distortion of the 

body's shape as influenced by the tidal force. 

Definition2.3. Zafar and Musavvir (2013) express the conformal 

curvature tensor  as follows: 

(2.13) 

From (2.2) and (2.13), we can see that 

 

 

                                                                  

(2.14) 

2.5. Conharmonic Curvature Tensor  

The conharmonic curvature tensor, a geometric entity within the 

realm of differential geometry, serves as a generalization of both 

the projective curvature tensor and the conformal curvature tensor. 

Its properties have been extensively investigated across diverse 

contexts, encompassing Riemannian geometry, Kähler geometry, 

and cosmological studies. 

Definition2.4. For  the Conharmonic curvature tensor  

defined as Ishii (1957) and Siddiqui and Ahsan (2010) 

 

(2.15) 

Using (2.2) and (2.15), we find that 

 (2.16) 

Where:  is the Weyl projective curvature tensor and  is 

the torsion tensor. 

2.6. Projective Curvature Tensor  

The projective curvature tensor  is a geometric object intro-

duced in differential geometry. It generalizes the projective curva-

ture tensor and the conharmonic curvature tensor. It has been stud-

ied in a variety of contexts, including Riemannian geometry, Käh-

ler geometry, and cosmology. The properties of an M-projective 

curvature tensor were proposed by Pokhariyal and Mishra in 

(1971). This tensor is described as follows: 
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The M-projective curvature tensor is a tensor field of type (1,3) on 

a manifold M. It is defined by the following equation: 

 

 

                            

(2.17) 

Where:  and 

  . 

R is the Riemann curvature tensor, S is the Ricci tensor,  is the 

metric tensor, n is the dimension of the manifold. 

The -projective curvature tensor has a number of interesting 

properties. For example, it is invariant under conformal transfor-

mations. This means that it is the same for two metrics that are 

conformally equivalent. The -projective curvature tensor also 

vanishes if and only if the manifold is Ricci-flat. 

The -projective curvature tensor has been used to study a varie-

ty of geometric problems. For example, it has been used to classi-

fy Riemannian manifolds, to study the geometry of Kähler mani-

folds, and to develop new models of gravity. 

The local coordinates expression of equation (2.17) as follows 

(2.18) 

Assuming  in equation (2.18) and contracting with  

byusing (1.2a), (1.5a), (1.5b) and (1.5c) the -projective curva-

ture tensor is given by 

(2.19) 

The combination of equations (2.2) and (2.19) leads to the conclu-

sion that 

 (2.20) 

3. Main Results. 

3.1. Expansion Curvatures Tensors in Finsler Space 

The expansion curvature tensor, closely linked to both the Riemann 

curvature tensor and the Berwald curvature tensor, vanishes exclu-

sively when the underlying Finsler manifold exhibits flatness. With-

in the realm of Finsler geometry, the expansion curvature tensor T 

emerges as a geometric entity, serving as a quantifier of the curva-

ture inherent in Finsler manifolds, which stand as generalizations of 

Riemannian manifolds. In our previous work, Al-Qashbari and Al-

Maisary (2024), we introduced the generalized Berwald covariant 

derivative  for any tensor . In section3 of last our paper 

AL-Qashbari, and Halboup (2024), we introduced theorem3.1 and 

we investigated the following identity 

                  (3.1) 

Also in section4 in last our paper AL-Qashbari, and Halboup 

(2024), we introduced theorem3.2.1 and we investigated the fol-

lowing identity 

                (3.2) 

From the previous steps, we can conclude the following theorem 

Theorem3.1.1. The expansion of (1.1) is given by (3.1). 

The dimensionality of many curvatures tensors operators will be 

extended in accordance with theorem 3.1.1. 

Definition3.1.1. A Finsler space of tensor  is called as pro-

jective curvature tensor and is known as satisfies (3.2), will be 

called a generalized-first recurrent space. We shall call this Finsler 

space as a generalized -first-recurrent space and we denoted 

by - . 

Transvecting condition to a higher dimensional space (3.2) by , 

using (2.3a) and (1.2b), we get 

              (3.3) 

Again, transvecting condition to a higher dimensional space (3.3) 

and (1.6a), we get, (1.7a) (2.3b) using, by  

               (3.4) 

Therefore, the proof of theorem is completed, we can say 

Theorem3.1.2. In - , covariant derivative for 

Berwald of first order for torsion tensor  and deviation 

tensor   are given by (3.3) and (3.4) respectively. 

Contracting the index space by summing over  and  in the condi-

tions (3.3) and (3.4), using (2.4a), (2.4b), (1.2a), (1.6b), (1.7a) and 

(1.7b), we get 

                     (3.5) 
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And 

                    (3.6) 

From conditions (3.5) and (3.6), we show that the curvature vector  

 and the curvature scalar   cannot equal to zero because if the 

vanishing of any one of these would imply   and 

, that is a contradiction. 

So the proof of theorem is completed, we can say 

Theorem 3.1.3. In  - the vector  and the sca-

lar  in equations (3.5) and (3.6), are non-vanishing, respectively. 

 

4.2. Study the Application of Identities in Expression 

Mathematical identities are equations that hold true universally, 

irrespective of the specific values assigned to their variables. 

These identities serve as valuable tools for simplifying expressions, 

solving equations, and establishing theorems. Our focus was on 

investigating the expansion of the Berwald covariant derivative for 

any curvature tensor as presented in equation (3.2). 

                       (3.7) 

We suppose that (3.7) holds to investigate the following identities 

3.2.1.  By tack away Berwald covariant derivative for (2.2), we have  

                                                             

(3.8) 
Using(1.3a) and (3.7) in(3.8), we get 
 

 

This gives 

  

 

                      (3.9) 

By using (2.2) in (3.9), we have 

   (3.10) 

From the previous steps, we can conclude the following theorem 

Theorem3.2.1: The expansion derivative for the Berwald of Rie-

mann curvature tensor  (2.2) satisfies the equation (3.10). 

Transvecting condition to a higher dimensional space (3.10) by 

, using (1.2b) and (2.3c)  we get 

      (3.11) 

Again, transvecting condition to a higher dimensional space(3.11) 

by , using (1.7a), (1.6a), and (2.3d), we get 

      (3.12) 

Therefore, the proof of theorem is completed, we can say 

Theorem3.2.2. In covariant derivative for the Berwald of 

fourth order for torsion tensor  and deviation tensor   are 

given by (3.11) and (3.12) respectively. 

3.2.2. Tack away Berwald covariant derivative for (2.7), we have  

    (3.13) 

Using (1.3a), (1.4a), (3.7) and (3.13), we get 

 

 

                 . 

Or can be written as 

 

 

                 (3.14) 

From (2.7) and (3.14), we have 

(3.15) 

In conclusion the proof of theorem is completed,  we can 

determine 

Theorem3.2.3. The expansion derivative for the Berwald of Con-

circular curvature tensor  (2.7) satisfies the equation (3.15). 

3.2.3. Tack away Berwald covariant derivative for (2.12), we have 
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(3.16) 

From(1.3a), (1.3b), (3.7)and(3.16), we get 

 

 

                 . 

Or can be written as 

 

 

                

   

(3.17) 

By using (2.12) in (3.17), we have 

(3.18) 

The proof of theorem is completed, we conclude 

Theorem3.2.4. The expansion derivative for the Berwald of P1-

curvature tensor (2.12)  satisfies the equation (3.18). 

3.2.4. Tack away Berwald covariant derivative for (2.14), we have 

 

 

                  (3.19) 

Using(1.3a), (1.3b), (1.4a) and (4.1) in (3.19), we get 

 

 

Or, we can write as 
 

 

  (3.20) 

By using (2.14) in (3.20), we have 

   (3.21) 

In conclusion the proof of theorem is completed,  we can 

determine 

Theorem3.2.5. The expansion derivative for the Berwald of Con-

formal curvature tensor  (2.14) satisfies the equation (3.21). 

3.2.5. Tack away Berwald covariant derivative for (2.16), we have 

(3.22) 

Using(1.3a), (1.3b), (3.7) in (3.22), we get 

 

. 

Or can be written as 

 

 

               

   

(3.23) 

From (2.16) and (3.23), we get 

    (3.24) 

Thus, the proof of theorem is completed, we get 

Theorem3.2.6. The expansion derivative for the Berwald of Con-

harmonic curvature tensor  (2.16)  satisfies the equation 

(3.24). 

3.2.6. Tack away Berwald covariant derivative for (2.20), we have 
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Using (1.3a), (1.3b) and (3.7) in(3.25), we get 

 

 

 

This can be written as 

 

 

                  

  

(3.26) 

From (2.20) and (3.26), we have 

   (3.27) 

So, the proof of theorem is completed, we can say 

Theorem3.2.7. The expansion derivative for the Berwald of pro-

jective curvature tensor  (2.20) satisfies the equation (3.27). 

4. Conclusion 

 In this paper, we have studied new expansion identities for some 

curvature tensors in Finsler geometry. We have successfully 

proved several new identities that relate different curvature tensors 

and generalize some well-known results in Riemannian geome-

try.These results make a significant contribution to a deeper un-

derstanding of Finsler geometry, as they provide new tools for 

analyzing the structure of these spaces. Moreover, these identities 

can be useful in studying physical phenomena described by mod-

els based on Finsler geometry, such as generalized general  rela-

tivity. Despite the progress made, there are still many open ques-

tions. For example, one can study similar identities for other cur-

vature tensors, or in Finsler spaces with additional structures. Ad-

ditionally, potential applications of these identities can be ex-

plored in fields such as string theory and brane theory.We hope 

that this research has made a valuable contribution to the field of 

Finsler geometry and will encourage other researchers to continue 

studying these rich and fascinating spaces. 
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