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Abstract  

This article produced a one-eight linear multi-step method for the numerical integration of third-order initial value problems (IVPs) of 

ordinary differential equations (ODEs). The method was achieved by considering the power series polynomial as an approximate solu-

tion using the techniques of interpolation and collocation. The resulting equations were solved for the unknown parameters and substitut-

ed into the approximate solution to the problem to obtain the required discrete and additional formulas that constituted the proposed 

block method.  Analysis of the basic properties of the method reveals that it has theoretical order five, zero stable, consistent, conver-

gence, and absolute stability. The numerical experiment results showed that the method compares well with the three cited methods in 

literature and has the potential to solve non-linear third-order ODEs. 

Keywords: power series, grid points, off-grid points, convergence, interpolation, collocation AMS Subject classification: 65L05, 65L06,. 

1. Introduction 

Ordinary Differential Equations (ODEs) are widely used in the 

fields of management, engineering, science, technology, and social 

sciences. These physical occurrences are easier to understand when 

they are expressed as mathematical equations. Many of these math-

ematical formulas result in ODEs of various degrees and orders. 

For instance, the authors in [1, 4] used fractional order system of 

ODEs to analyse the transmission dynamics of infectious diseases. 

In this paper, we consider higher-order ordinary differential equa-

tions of the form: 

 
   

3
, , , , ( ) , , ( )0 0 0 1 0 2y f x y y y y x y x y x              (1) 

where is a given real value function which is continuous within the 

interval of integration. 

An equation (1) is often solved numerically by reducing it to a 

system of first-order ODEs. Then the resulting system of equations 

is solved by appropriate existing methods of solving first-order 

ordinary differential equations. Furthermore, several authors have 

adopted the reduction method for solving general solutions of high-

er-order ODEs, most notably Ref. [5]–Ref. [7]. Also, Awoyemi [4] 

claimed that the reduction method for the first-order system is not 

cost-effective because of computer time and computational effort. 

Remarkably, authors such as Ref. [9]–Ref. [14], to name a few, 

have worked to provide methods for directly solving higher-order 

initial value problems (IVPs) instead of translating higher-order 

ODEs to first-order systems. The hybrid numerical method with 

block extension was used by Duromola and Momoh [15] to obtain 

the direct solution of a third-order IVP of ODEs. The method has 

an order of accuracy of five. This work presents an order-five, one-

eight linear, multi-step method for the direct solution of general 

third-order ODEs.  

2. Methodology/Derivation of the proposed method 

 
Power series of the form: 

  
  1

0

r s
j

y x a xj
j

 




   

                 (2) 

is considered as basis function.  

The third derivative of (3) gives: 

  
  1

(3) 3
( ) 1 2

0

r s
j

y x j j j a xj
j

 


  


 

                  (3) 
Equating (3) and (1) yields the differential system: 
 

  
  1

3 '1 2 ( , ( ), ( ), ( ))
0

r s
j

j j j a x f x y x y x y xj
j

 


  


     (4) 

where
,

ja s the parameters to be determined, r and s  denotes the 

number of collocation and interpolation points respectively. By 

collocating Eq. (4) at the mesh points
1 1

, 0
32 8

n jx x j

 
   

 
,   

and   interpolating Eq. (2) at jnxx  ,
1 1 3

, ,
32 16 32

j    yields a 

system of equations for collocation equation, 

  1

0

1 1 3
, j , ,

32 16 32

r s

j

j n j

j

a x y
 





                                                                                  

(5) 

and for interpolation, 
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   
  1

14 1
1 2 3 , 0

8320

r s
j

j j j j a x f jj n j
j

 
 
 

 


     


               (6) 

By putting these equation systems into matrix form and solving them to determine the parameter values
,

ja s , 
1 1

0
32 8

j
 

  
 

, 

Thus, after a few simplifications, this provides a continuous hybrid linear scheme with continuous coefficients of this kind Eq. 
(8) when substituted in Eq. (2): 

     3
i i

j n j j n j

j j

y t y t h f t                                                                                                      (7) 

The coefficient of  j x  and  j x  are:  

  2
512 80 31

32

t t t                      2
1024 128 31

16

t t t                          2
512 48 13

32

t tt     

 
7 6 5

34359738368 18790481920 4110417920 4587520001

0
165150720

4

3 2
27525120 845824 10832 21

t t t t
t

t t t


  



   

 
 
 
 

 

 
7 6 5

34359738368 16911433728 30534533121

1
41287680 22020096032

4 2
854784 41920 609

t t t

t

t t t


 



   

 
 
 
 

 

 
7 6 5

34359738368 15032385536 223136987281

1
27525120 11010048016

4 2
114688 19344 441

t t t

t

t t t


 



   

 
 
 
 

 

 
7 6 5

34359738368 13153337344 16441671681

3
41287680 7340032032

4 2
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t t t

t
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 
 
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 
7 6 5

34359738368 11274289152 12918456321

1
165150720 550502408

4 2
43008 80 21

t t t

t

t t t


 



   

 
 
 
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              (8) 

where 
nx x

t
h


  

Evaluate (7) at 
1

0,
8

t  to obtain the discrete schemes: 

3

1 1 3 1 1 3 1

32 16 32 32 16 32 8

3 3 116 126 4 4
7864320

n n
n n n n n n n

h
y y y y f f f f f

      

 
        

 
           (9a) 

 

3

1 1 1 3 1 1 3 1

8 32 16 32 32 16 32 8

3 3 4 126 116
7864320

n
n n n n n n n n

h
y y y y f f f f f

       

 
        

 
           (9b) 

 

 

2.1 Implementation in block mode 

 

The general block formula proposed by Awoyemi et al. [16], in the normalised form is given by  

 
     0

m n m mA Y ey h df y h bF y                    (10) 

By evaluating Eq. (8) at 
1

8
t  ; the first and second derivatives at 

1 1
, 0

32 8
n ix x i

 
   

 
and substituting into Eq. (10) 

gives the coefficients matrices as 

 

311 1303 853 659 179 53 147 7 251 29 27 7

110100480 82575360 22020096 9175040 688128 92160 163840 5760 23040 2880 2560 720

T

d 
 
  
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1 1 1 1 0 0 0 0 0 0 0 0

1 1 3 1
1 1 1 1 0 0 0 0

32 16 32 8

1 1 9 1 1 1 3 1
1 1 1 1

2048 512 2048 128 32 16 32 8

T

e

 
 
 

  
 
 
  

 

 

 
 0

12 12A    identity matrix 

 

4337 11 793 3743 493 1 117 1 323 31 51 2

165150720 4128768 11010048 20643840 2580480 640 40960 240 11520 720 1280 45

1867 601 831 313 1193 1 27 1 11 1 9 1

55050240 13762560 18350080 13762560 1720320 3072 81920 960 960 120 320 60

33

3318350

b



      


25 731 263 17 73 3 1 53 1 47 2

080 4128768 55050240 6881280 2580480 2580480 8192 720 11520 720 2880 45

131 97 271 341 199 1 9 19 1 3 7
0

330301440 82575260 110100480 82575360 10321920 30720 163840 23040 2880 2560 720

         

 
 
 
 
 
 
 
 
 

T



 

 

3. Analysis of the method 

 

In this section, the analysis of the basic properties of the method was carried out as follows. 
 

3.1 Order and Error Constant of the method 

 

The formula in Eq. (9b) in a conventional linear multistep method can be express as  

 
3 4

3

1 08 32 8 32

j j j j
n n

j j

y h y 
 

 

                     (11) 

 

According to Lambert [5], the local truncation error associated with Eq. (11) was defined by the difference operator. 

 

   3

032 32 32

:
32 32

k

j j n j n

j

j j
L y x h y x h h y x h 



    
       

   
           (12) 

 

 y x is assumed to have continuous derivative of a sufficiently high order. Therefore expanding (10b) in Taylor series  

about the point x to obtain the expression    

   

                
2 32 32

: ...0 1 2 2 3

32

p pp p
L y x h c y x c hy x c h y x c h y x c h y xj p p

  
                        (13) 

 

The term 3c p  is called the error constant and implies that the local truncation error is given by: 

 
       3 3 4

4 0
p p p

n k p nt c h y x h
  

                             (14) 

 

 

Since 
0 1 2 3... 0, 0p pc c c c      . See Ref. [17]; the method has order 5p   with error constant  

3

19

11083077207182080
pc    
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3.2 Zero Stability of the Method 

 

According to Fatula [18], a block method is zero stable provided the roots , 1(1)jz j k  of the first characteristic polynomi-

al ( )r  specified as  

     0

0

det 0, 1
k

j k j

j

z A Z A 



 
    

 
                           (15) 

Satisfies 1,jz   and for those roots with 1,jz  the multiplicity must not exceed 2. By definition (3.2), the block is zero 

stable since the roots of the characteristic polynomial satisfy 1z  and the root 1z  has multiplicity not exceeding the 

order of the differential equation. Moreover, as    0, 1 ,rh z z
     where   is the order of the differential 

equation, for the block method, 12,r  and 3   

   
39 1 0z      

0,0,0,0,0,0,0,0,0,1,1,1   

Hence, worth concluding that the method is Zero Stable 

 

3.3 Consistency of the Method. 

 

From Eq. (9b), the first and second characteristics polynomials of the method are given by 

  

 
1 3 1 1

8 32 16 323 3r r r r r      

 
3 1

32 8

1 1
1 4 126 116 132 16

7864320 7864320 7864320 7864320 7864320

r r r r r          

 

This implies that the method presented in this report is consistent since it satisfies the following conditions: 

i. The order of the method is 5 1p   which is obvious. 

ii. For the method, 1 2 3 41, 3, 3 1and         , thus  

4

1

1 3 3 1 0j

j




     , show the condition (ii) is satisfied.  

iii. If  
1 3 1 1

8 32 16 323 3r r r r r      and  
7 29 15 31

8 32 16 32
1 9 3 1

8 32 16 32
r r r r r

   

      

It follows from here that    1 0 1    

Show that the condition (iii) is satisfied as well 

iv. Note that 

 
23 93 47 95

8 32 16 32
105 15921 1395 1953

512 32768 4096 32768
r r r r r

   

      

   
1

1 3! 1
512

     

Thus, the condition (iv) is satisfied.  

Hence the method is consistent  

 

3.4 Convergence of the Method 

 

According to Henrici [19], the necessary and sufficient condition for a numerical method to be convergent is to be Zero Sta-

ble and Consistent. Thus, since it has been successful shown in (3.2) and (3.3) above respectively. Hence, the method is said 

to convergent. 
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3.5 Region of Absolute Stability of the Method 

 

Considering the stability polynomial in the general form: 

     , h h 0r r r             (16) 

where, 
2h h   and 

f

y






is assumed constant. The first and second characteristics polynomials of Eq. (9b) are given by 

  

 
1 3 1 1

8 32 16 323 3r r r r r      

 
3 1

32 8

1 1
1 4 126 116 132 16

7864320 7864320 7864320 7864320 7864320

r r r r r          

The boundary of the region of the absolute stability is  

 

 
h

r

r




    

1 3 1 1

8 32 16 32

3 1

32 8

1 1

32 16
4 126 1161

7864320 3 3

0

r r

r r r r

r r   

 
   

 
        (17) 

 By setting
ir e  , then Eq. (17) becomes  

 

 

3

8 32 16 32

3

32 16 32 8
4 126 1161

7864320 3 3
i i i i

i i i i

e e e e

h

e e e e

   

   


   

 
   

 
       (18) 

Evaluate Eq. (18), and equate the imaginary part to zero gives  

 

 

1 3 1 1
7864320 cos 8cos 28cos 56cos 35

8 32 16 32

1 3 1 1
2cos 224cos 424cos 28448cos 29350

8 32 16 32

h

   



   

 
    

 

   

  (19) 

Evaluating Eq. (19) at the interval of 
030 gives the following results of the boundaries for the region of absolute stability of the method as 

tabulated below; 

Table 1 Boundaries for region of absolute stability 

  
00  

030  6
00  9

00  12
00  15

00  18
00  

 h   0 133.51 10  
118.98 10  

92.30 10  
82.29 10  

71.37 10  
75.89 10  

 

 

From table (1) above, it could be deduced that the region of absolute stability of the method is given by    70,5.89 10x     

which satisfies the condition for p-stability. 
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Fig. 1: Domain of stability (i.e. absolute) of the proposed method 

 

 

4. Numerical Results 

 

In this section, the method was utilized to solve some specific ini-

tial value problems of third-order ordinary differential equations to 

verify its accuracy and workability.  

 

 

Problem 1. 

4

(0) 0, (0) 0, (0) 1, 0.1

y x y

y y y h

  

    
 

 Exact solution:
3 1

( ) (1 cos 2 )
16 18

y x x x    

 Source: Anake et.al. [20] 

 
  Table 2: Result of Problem 1, computed with block method,  h = 0.1 

x-value y-exact-solution y-computed solution 
Error in new 

method P=5 

Error in Anake et.al. [20]  

P=5 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.00000488280 

0.00001953106 

0.00004394434 

0.00007812195 

0.00001953106 

0.00004394434 

0.00007812195 

0.00012206285 

0.00004394434 

0.00007812195 

0.00000488280 

0.00001953105 

0.00004394434 

0.00007812194 

0.00001953105 

0.00004394434 

0.00007812194 

0.00012206286 

0.00004394434 

0.00007812194 

2.546E-12 

3.234E-12 

1.209E-12 

1.695E-12 

3.233E-12 

1.209E-12 

1.694E-12 

4.04E-12 

1.207E-12 

1.693E-12 

2.0952E-09 

1.6375E-08 

1.1154E-07 

9.8800E-07 

3.0406E-06 

9.0126E-06 

1.6965E-05 

2.6772E-05 

3.8135E-05 

5.0596E-05 
 

 

 
Figure 2: Comparison of absolute errors of the proposed meth-

od on problem 1 as compared with Exact solution   
  

 
Figure 3: Comparison of absolute errors of the proposed meth-

od on problem 1 as compared with Anake et. al [20] 
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Problem 2. 

3sin( )

(0) 1, (0) 0, (0) 2, 0.1

y x

y y y h

 

     
  

 Exact solution:

2

( ) 3cos( ) 2
2

x
y x x     

Source: Adoghe and Omole [21] 
 

 
 

Problem 3. 

(0) 3, (0) 1, (0) 5, 0.1

xy e

y y y h

 

     
  

 Exact solution:
2( ) 2 2 xy x x e     

Source: Obarhua and Kayode [22] 

 

 
Table 3: Result of Problem 2, computed with block method, h = 0.01 

x-value y-exact-solution y-computed solution 
Error in new 

method P=5 

Error in Adoghe and 

Omole [21] P=5 

0.1 0.99999843750 0.99999843750 0.0000 2.2204E-16 
0.2 0.99999960937 0.99999960937 0.0000 4.4409E-16 
0.3 0.99999990234 0.99999990234 1.0E-20 1.3323E-15 
0.4 0.99999912109 0.99999912109 0.0000 3.8858E-15 
0.5 0.99999755859 0.99999755859 0.0000 9.2149E-15 
0.6 0.99999912109 0.99999912109 1.0E-20 1.8985E-14 

0.7 0.99999960937 0.99999960937 2.0E-20 3.4084E-14 
0.8 0.99999843750 0.99999843750 3.0E-20 5.7343E-14 
0.9 0.99999648437 0.99999648437 1.0E-20 9.0095E-14 
1.0 0.99999843750 0.99999843750 5.0E-20 1.3678E-13 

           

 
Figure 4 Comparison of absolute errors of the proposed meth-

od on problem 2 as compared with Exact solution 

 

       

        

 
 

Figure 5: Comparison of absolute errors of the proposed meth-

od on problem 2 as compared with Adoghe and Omole [21] 
 

 
Table 4: Result of Problem 3, computed with block method, h = 0.1 

x-value y-exact-solution y-computed solution 
Error in new 

method P=5 

Error in Obarhua 

and Kayode [22] P=5 

0.1 3.0031494191527391486 3.0031494191527391486 1.5984E-18 4.65668E-11 

0.2 3.0063476970037620101 3.0063476970037620101 4.653E-19 4.22858E-10 

0.3 3.0095948642140710855 3.0095948642140710856 4.08239E-17 1.51196E-09 

0.4 3.0128909515406343767 3.0128909515406343767 3.76471E-17 3.73730E-09 

0.5 3.0063476970037620101 3.0063476970037620101 2.5861E-18 1.35178E-08 

0.6 3.0095948642140710855 3.0095948642140710855 1.5729E-18 1.35178E-08 

0.7 3.0128909515406343767 3.0128909515406343765 4.21813E-17 2.21617E-08 

0.8 3.0162359898366857475 3.0162359898366857475 3.64115E-17 3.41303E-08 

0.9 3.0095948642140710855 3.0095948642140710855 3.70003E-18 5.01217E-08 

1.0 3.0128909515406343767 3.0128909515406343766 2.8074E-18 7.09074E-08 
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Figure 6: Comparison of absolute errors of the proposed meth-

od on problem 2 as compared with Exact solution 
                        

 
Figure 7: Comparison of absolute errors of the proposed meth-

od on problem 2 as compared with Obarhua  and Kayode [20] 

 

5.Discussion 
 In this research work, we have applied the procedures of colloca-
tion and interpolation to develop a linear hybrid multistep method 
for solving the initial value problem of third-order ordinary differ-
ential equations. Table 2, Table 3, and Table 4 displaced the results 
of the proposed method as applied to the test problems 1, 2 and 3. 
The results were further analysed using graphs displaced in Figures 

2 to 7.  It is clear from Tables 1 to 3 and Figures 2 to 7 that the 
derived method is better in terms of accuracy than the ones pro-
posed by Anake et al. [20], Adoghe and Omole [21], and Obarhua 
and Kayode [22]. 

 

6. Conclusion 
The fractional method has been developed to solve third-order or-
dinary differential equations directly. The main and additional for-

mulas constituting the proposed block method were obtained from 
the same continuous scheme derived via interpolation and colloca-
tion procedures. The stability properties and region of the method 
were discussed. The method is applied in block form. Numerical 
results from the block method show they are efficient and adequate 
for solving general third-order initial value problems of ordinary 
differential equations. When the results were compared to those 
proposed by Anake et al. [20], Adoghe and Omole [21], and 
Obarhua and Kayode [22], the new results were better in terms of 

accuracy. 
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