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Abstract 
The objective of this paper is to prove general theorems on generating functions involving two-parameter three-variable Srivastava poly-
nomials, Laguerre polynomials, and two-variable Lagrange polynomials. Some applications of these theorems lead to a number of bilat-
eral generating functions involving well-known classical polynomials. 
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1. Introduction  
 

The srivastava polynomials is defined by [10]:  

 

such that   is a double bounded sequence of real or  complex  numbers, N
 
be a set of  non-

negative integers, the symbol [a] indicate to the largest integer in   and indicate to the Pochham-
mer  symbol given by [11] 

              

 

where   is Gamma function. 
 

The Srivastava polynomials )(xS N
n  is extended by Gonzalez et al. [5] as follows: 

 
The family of one-variable, two-parameter  are defined by [8]: 

 
Another extension of the Srivastava polynomials is given by Kaanoglu et al. [8]  as:  

        [[[[  

 
such that  knA ,  is a bounded double sequence of any number, real or complex.  
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In [8], Kaanoglu et al. introduced the three-variable polynomials as follow:   

 
where  is a triple sequence of complex numbers. Suitable choices of  in 
equation (1.6) give a three-variable version of well-known polynomials (see also [6]).  
The multivariable extension of Srivastava polynomials in r-variable was recently introduced in [7] as. 

 
          

 
           
Such that   is a sequence of complex numbers. 
The two variable Laguerre polynomials (TVLP) are defined by series ([2]; p.!21(69)) 

 
and specified by the following generating functions: 

 
 

Also ),,( 1
),,( 1

r
αα

n xxg r    is Lagrange polynomials of r-variables,  given by the following result [1]: 
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,            (1.10) 

where )(r
DF  is the Lauricella’s  function of the fourth  kind  of  several  variables defined by [11] 
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 ,                               (1.11) 

                                    
.1},,max{ 1 rxx           

The special case of (1.10) when 12  μandr  gives the following result: 

 

where 1F  is  Appell  double hypergeometric functions [11]  

 

 
Kaanoglu et al. [8] provided a definition of two-variable polynomials   as follows: 
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Note that in (1.14), if we set  and   , we have  
                                                                     (1.15)  
 
Furthermore, choosing   and    in defined (1.14), then 
                                           ,                          (1.16) 
where  denotes the Lagrange po lynomials given by  
 

                                       

where  denotes the Lagrange-Hermite po lynomia ls given explic it ly  

 
 
If we set   

 
in  (1.6) and   , we get  the following result: 

                      .                       (1.19) 
               
Also If we set   

 
in  (1.6) and   , we get  the following result: 

 
                                  .                       (1.20) 
 
 where  is the polynomials given by   
                                

 
2. Main Results    
Theorem 2.1  Lagurre polynomials  of two variables and Srivastava polynomials with    
Two-parameter three-variable  satisfied the following result: 

 
 

 
Proof:  Let ∆ symbolize of the left hand side of (2.1)  and  expresses the equation (1.6) : 

 
Let  

 
Let   

 
Let  
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Let  

 

 
Therefore, the equation (2.1) holds. 

Similarly, we right away obtain the following result. 

Theorem 2.2 The following bilateral generating function family is true: 

 
 

 
 

Note that, if we let   in the r.h.s. of (2.1) and (2.2) and then using (1.14), we get:   

 
 

 
 

 
 

 
 
Now, using (1.15), (1.19) in (2.3) and (2.4) respectively and then using (1.16) and (1.20), we have 
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and 

 
 

 
 

 
 

 
 

Using (1.15) in (2.5),  (2.6) and using (1.16) in (2.7),  (2.8), we have  
 

 

 
 

 

 
and 

 
 

 
 

 
 

 
Remark 2.1  Choosing  

 
 and  in  (2.1) and (2.2) , we deduce  the following inter-

esting corollaries: 
Corollary 2.1.  
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Corollary 2.2.  

 

 
 
Remark 2.2 Choosing  

 
in   , we get  the following result: 

 

 

 
and 

 

 
 
Remark 2.3 Choosing    in (2.14), we get the following result: 
 

 
 

 
and 

  

 
 

 
 
3. Applications  
I. In (2.15) and (2.17), choosing   and using (1.19), we get: 
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and 

 

 
Using relation (1.9) in the L. H. S. of result (3.1), we get: 
 

 
 

                  .               (3.3) 
 
 
and using relation (1.10) in the L. H. S. of results (3.2), we get: 
 

 
 

     .                  (3.5) 
 
II. In (2.16) and (2.18), choosing  and using (1.20), we get 
 

 
 

 
and 
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