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Abstract
The current information related to security and IoT by conducting a theoretical and methodological study. It provides a detailed expla-
nation on what is the meaning of IoT and on the various applications in IoT. It also presents the major issue of the security of IoT for 
applications. Moreover, the chapter discusses the metrics that define lightweight algorithms in hardware and software, and it presents 
the reasons for choosing blocks in lightweight algorithms and studying the architecture of those blocks. It also refers to the 
blocks/algorithms, both the traditional ones and the lightweight ones.
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1. Introduction
In the recent decade, the world has been more networked with 

many variousdevices, such as sensors, smart networking, RFID 
and IoT, to achieve numerous activities[1]. Currently, IoT is a 
current technology of smart objects. Laptop, Telephone, 
Car,Refrigerator are tangible devices known as smart things. IoT 
is a network of devices ofsmart items which are identified, access-
ible and controlled by a network of devices. Theyare also able to 
compute and make decisions. IoT is a worldwide network with 
dynamiccapabilities that employ standard communication systems. 
It can operate on actual andvirtual items. It has intelligent plat-
forms for the usage which are readily incorporated into communi-
cation technologies [2].In IoT systems, the objects when con-
nected to each other, have restrictions contrasted to Personal 
Computers. These limits might be displayed in power consump-
tion,execution time and memory cost. These constraints are inef-
fective on personal Computers[3].On the other hand, security is 
the process of safeguarding data when they are communicated and 
shared among objects. Therefore, the data security service is
represented in authorization, confidentiality, authentication, and 
integrity. The security saves data during dissemination in IoT so 
that it cannot be corrupted or manipulated. Therefore, the security 
service can be given by cryptography [4]. Cryptography is an 
essential technique (algorithms) in security that may be characte-
rized as turning original text(plain-text) into mystery-text (cipher-
text) and reversing from mysterious-text (cipher-text) into origi-
nal-text(plain-text). These functions are termed encoding and de-
coding [5]. Different algorithms such as AES, and DES are tradi-
tional cryptographic algorithms.AES is one of the most important 
algorithms in cryptography and can be implemented on different 
platforms [6]. It has a block size of 128 bits and a key length of 
128,192, 256 bits. DES contains a 56-bit key for 64-bit block en-
cryption. The key in DES is smaller than AES [7], so the security 
of DES is lower than AES[8]. Traditional encryption algorithms 
provide high security, but they consume high processing and large 

consumption of memory as well as power. On this basis, tradition-
al encryption is not suitable for small size devices with limited 
resources (those devices that work in the Internet of Things). The 
increase in processors, power consumption and memory cost in 
traditional encryption lead to the emergence of a new encryption 
called lightweight cryptography (LWC). This encryption reduces 
the cost of memory usage and also reduces power to be suitable 
for devices with limited resources (those devices that work in the 
Internet of Things).

LWC is the new trend in encryption for resource-limited de-
vices. This is due to the use of simple mathematical operations, 
lower memory cost, and lower power consumption. In another 
way, it can make a trade-off between security, performance, and 
cost, see Figure 1.1. The purpose of LWC is to minimize the total 
costs of traditional encryption implementation by focusing on 
numerous factors such as code size, memory cost, execution time 
and energy usage.

Figure 1.1: Cost, Performance and Security.
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1.1 IoT Overview
The Internet of Things (IoT) is a network of interconnected 

items, each with its own unique identifier, that may gather and 
share data via the Internet with or without human participation [9]-
[13]. All these applications are interconnected to exchange data 
through the Internet (network of Internet of things). The amount of 
data will be very large between these devices.

Internet of Things (Smart Home, IoT Wearable’s, Smart Grid, 
Connected Cars, smart healthcare, Smart Cities, Health Care,
Smart Farming, and industry 4.0) applications have become very 
important in our daily life. For this reason, they have become the 
focus of researchers. See Figure 1.2 and Table 1.1

Figure 1.2:IoT Applications.
In the year 2021, the number of connected devices will be about 
20 billion devices in the Internet of Things. As we mentioned 
earlier, the data that will be generated between them is very large 
to communicate with each other. In this scenario, we note the 
great development of Internet of Things technology, which 
enables it to manage and control these devices. We will also note 
the flexibility and ease in the way of managing the data collection 
provided by the Internet of Things from applications.

Table1.1:Applications of Internet of Things

1.2 IoT Security
In the Internet of Things systems, the shift is from desktop com-
puters to small-sized computing devices with limited resources. 
The interconnection of these small devices via the Internet and 
across many networks, the exchange of large data, leads to an 
unprecedented challenge for those users by securing that data [14], 
[15]. In addition, because IoT devices interact directly with the 
actual world to gather sensitive data or regulate physical environ-
ment variables, they are easily accessible and vulnerable to several 
security assaults[16], making them an appealing target for attack-
ers [17]. With demands of confidentiality, data integrity, authenti-
cation & authorization, availability, privacy & regulation require-
ments, and frequent system upgrades, all of these factors make 
cyber-security a serious concern in IoT devices [18]. Cryptogra-
phy might be one of the most effective techniques in this circums-
tance to ensure the secrecy, integrity, authentication, and authori-

zation of data transiting across IoT devices [15]. Cryptography 
might potentially be used to safeguard data that is stored or sent 
via a network. Traditional PC-based cryptography solutions, on 
the other hand, are not suited for most IoT devices, such as sensors 
and RFID tags, owing to resource constraints. This problem can be 
solved with a lighter version of these methods.

1.4 Measurement of Evaluation LWC
Despite extensive study in programming and equipment used 

for hardware and software implementation, the results demonstrate 
that the association between them is difficult to establish due to 
differences in the execution platform [18].

1.4.1 Hardware Implementation

Given that the hardware is the first, the major measurements 
are memory utilization, code size, and energy usage. Any 
lightweight cryptography can only be measured by a particular 
type of circuit. However, various techniques produce varied simu-
lation results. As a result, there is no way to compare how differ-
ent algorithms are implemented in hardware. In terms of memory 
use, lightweight primitives should use smaller blocks with smaller 
keys. However, rather than using read/write memory, “burning” 
keys onto devices use read-only structures. It allows the key sche-
dule to use just the master keys for basic tasks. Energy economy is 
at the heart of hardware implementation, and latency, or the time it 
takes to perform a certain operation, is one of the factors used to 
build lightweight block ciphers.

1.4.2 Software Implementation

Lightweight cryptography (LWC) has integrated crucial me-
trics such as RAM use, code size, and throughput (execution time) 
in bytes per cycle. The FELICS (Fair Evaluation of Lightweight 
Cryptographic Systems) framework compares the performance of 
several lightweight algorithms across different implementations 
using a variety of measures. The FELICS test for three micro-
controllers: 8-bit AVR, 16-bit MSP, and 32-bit ARM-based for all 
cipher. But we use a framework that supports the AVR ATme-
ga128 (8-bit AVR). Table 1.2 explains all the characteristics of the 
target devices [19]. FELICS is extremely extensible, allowing it to 
be used to benchmark new lightweight primitives, extract new 
metrics, collect performance data for additional target devices, and 
assess implemented algorithms in new use scenarios [20].

Table 1.2: Key Characteristics of the Three Microcontrollers Used 
by FELICS[20].

1.4.2.1 Metrics

Here we will explain the lightweight metrics that are extracted 
from the FELICS software simulation for IoT applications. In this 
version, the power consumption parameter is not extracted be-
cause it is closely related to the basic parameters. For each opera-
tion needed by the respective module separately, as well as for all 
operations together, detailed and precise data are provided. Em-
bedded software engineers may utilize the entire findings to de-
termine which cipher operations should be implemented for a 
given device and application. Because of their usefulness, cycle-
accurate and free software simulators of the target embedded de-
vices are favored over-development boards. While a software 
simulator is simple to download and install, a development board 
requires purchase and configuration.
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1.4.2.2 Code Size

The code size is expressed in bytes and indicates how much space 
an operation takes up in the target device's non-volatile memory 
(for example, flash memory).The frameworks employ the GNU 
size tool to extract the code size for each target device, which lists 
the section sizes as well as the overall size in bytes for a specific 
binary file.

1.4.2.3 RAM

The RAM usage is divided into two categories: stack and data. 
After interruptions and subroutine calls, the stack consumption 
shows how much RAM was utilized to hold local variables and 
the return address. The static RAM need is determined by the size 
of the constants stored in the target device's RAM. It contains 
information relevant to each case, such as the data to encrypt, the 
master key, round keys, and initialization vectors. Because the 
framework doesn't allow for dynamically allocated variables, the 
heap isn't utilized at all.

1.4.2.4 Execution Time

The number of CPU clock cycles spent executing a particular 
operation is measured by the execution time. Either cycle-accurate 
software simulators of the target microcontrollers or development 
boards are used to derive the metric. The execution time is calcu-
lated by dividing the number of cycles in the system timer at the 
end of the measured operation by the number of cycles in the sys-
tem timer at the start of the measured operation.

1.5 Why Symmetric Block Cipher?
The sharing of information necessitates secure and efficient 

encryption/decryption, which includes both symmetric and asym-
metric encryptions. Asymmetric ciphers have great security prop-
erties, but they are more costly owing to additional computational 
processes [21]. In general, there are two types of block ciphers: 
symmetric and asymmetric. Both encoding and decoding take 
place on a fixed-size block (64 bits or more) at a time in a block 
cipher, but stream cipher processes the entire message byte by 
byte (8 bits at a time). Furthermore, stream cipher solely uses the 
confusion attribute (to use substitution between the ciphertext and 
the key to make the relationship as complicated as feasible). Block 
cipher, on the other hand, employs both confusion and dispersion 
(to use permutation to diffuse the statistical structure of plaintext 
throughout the bulk of ciphertext [22]).With a block cipher, re-
versing encrypted text is difficult. However, in a stream cipher, 
the encryption is done via XOR, which can be readily reversed to 
plain text. Hash function, on the other hand, is a mathematical 
process that converts data of any size into a bit string of a prede-
termined length hash (short). Inverting a one-way function is im-
possible. For these reasons, a block cipher is favored over a stream 
cipher in IoT devices, and this study focuses on the block cipher. 
One of the following structures is used in symmetric lightweight 
block cipher:

 Substitution-Permutation Network (SPN) 

 Feistel Network (FN) 

 General Feistel Network (GFN) 

 Add-Rotate-XOR (ARX) 

 NonLinear-Feedback Shift Register (NLFSR) 

 Hybrid.

SPN and FN are the most common structures because of their 
versatility in terms of implementing the structure based on appli-
cation needs [23]. Because a round function is applied to just one-
half of the state, Feistel structures could well be built with low 
average power hardware [24].In contrast to SPN structures, Feistel 
structures use non-linearity in just one-half of the state in each 

round, hence preserving safety margins generally necessitates a 
larger round function. When a decision is made between fewer 
SPN function rounds and more Feistel function rounds with the 
same level of security and equivalent energy costs, the SPN func-
tion may be the better option [24].

1.5.1 Feistel Network

The construction of a block cipher in a Feistel cipher uses asym-
metric structure in cryptography. Feistel cipher proposed a strong 
cipher that alternates substitutions (S-boxes) and permutations (P-
boxes). Encryption and decryption operations in the Feistel struc-
ture are similar in some cases, requiring a reversal of the key 
schedule. Therefore, the block cipher requires the implementation 
of half the size of the code and the circuit. The operation is illu-
strated in the Feistel cipher in Figure 1.3. The round function is F, 
and the sub key is K0,…, Kn for the rounds 0, 1, …, n respective-
ly. The operation encryption, divided the plaintext into equal (L0, 
R0):

For each round i = 0, 1, …, n   compute 

L i + 1 = R i

R i + 1 = L i⊕ F (Ri, K i) 

Then the ciphertext is (R n + 1, L n + 1) 

The operation Decryption: a ciphertext (R n + 1, L n + 1) 

Computing for i = n, n − 1, …, 0

R i = L i + 1

L i = R i + 1⊕ F ( Li + 1 , K i) . 

Then (L0, R0) is the plaintext again. 

The round function F in Feistel structure must not be invertible 
compared to SP-Structure. This is an advantage of Feistel structure 
[25], [26].

Figure 1.3: Encryption and Decryption Feistel Structure.

1.4.1 Generalized Feistel Network

The generalized Feistel Network (GFN) is a more advanced ver-
sion of the Feistel cipher. In GFN, the input block is split into two 
or more sub-blocks, with each sub-block receiving a (classical) 
Feistel transformation, followed by a cyclic shift proportional to 
the number of sub-blocks [27].

1.4.2 SP-network structure

Block cipher in SP-network, uses a chain of associated mathemat-
ical operations in cryptography. The operations in SP-network are 
several rounds or “layers" of substitution boxes (S-boxes) and 
permutation boxes (P-boxes). The S-boxes and P-boxes perform 
efficiently in hardware, such as XOR and bitwise that transfer 
blocks of input bits into output bits. The key is used in each round. 
S-boxes depend on the key. The output of an S-box substitute is an 
input for another S-box to ensure decryption. In particular, the 
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length of input and output should be the same, as illustrated in 
Figure 1.4. A P-box is a mix for all output of each S-box of one 
round, and make it inputs to S-boxes of the next round. In each 
round, it uses XOR between input/output from using S-boxes and 
P-boxes and key. In cryptographic strength, it uses S-box and P-
box togetherto satisfy confusion and diffusion properties [28], 
[29].

Figure 1.4: SP-Network 2 Rounds Encrypting Plaintext Block 16 
Bit.

1.4.3 Nonlinear Feedback Shift Register (NLFSR)
The NLFSR is a kind of nonlinear feedback shift register that may 
be used in both stream and block ciphers. It makes use of stream 
cipher building components whose present state is a nonlinear 
feedback function of their prior state [30].

1.4.4 Hybrid Architecture
Hybrid ciphers combine any two or more kinds (FN, SPN, GFN, 
NLFSR, ARX) to increase certain characteristics (for example, 
Code Size (reduces) Memory (reduces), energy (reduces), and so 
on) according to application needs, or even blend block and 
stream ciphers.

1.5 Lightweight Block cipher: definition
The general purpose of the block cipher is to provide a semi-
random flipping that builds complex protocols. There are several 
definitions for the lightweight block cipher. In [31], it is an appro-
priate implementation for low-resource devices, and it treats chal-
lenges such as: reduce overhead (silicon area or memory used), 
low-energy consumption, and sufficient security. Some research-
ers adopted certain characteristics to define lightweight ciphers 
[32].To design a lightweight cipher, such requirements must be 
met as follows:

 Smaller block sizes:  To keep a memory, block size in 
lightweight block ciphers should be (64 bits or 80 bits) 
not as block size used in a conventional AES (128 bits).

 Smaller key sizes: For efficiency, key sizes in 
lightweight block ciphers should be (less than 96 bits)

 Simpler rounds: To save area, the S-boxes operations 
in lightweight block use 4-bit S-boxes. Whereas conven-
tional blocks use 8-bit S-boxes.

 Simpler key schedules: To save power consumption, 
latency and memory, key schedules simple should be 
used in most of the lightweight block ciphers.

Minimal implementations: Uses of resources: encryption and 
decryption are not required for all applications. Some applications 
only support encryption or decryption operations. The block ci-
pher function uses fewer resources.

1.6 Common Lightweight Block Ciphers

AES (Advanced Encryption Standard): It is one of the most 
important algorithms in cryptography designed by Daemen and 
Rijmen [33]. It has a block size of 128 bits and key length 
(128,192, 256) bits. It is built on SP network design philosophy, 
which combines both substitution and permutation, and is faster in 
both hardware and software. The algorithm possesses excellent 

properties, flexible in execution, and also offers high security. But 
it becomes an obstacle to the hardware limited resources. Al-
though certain implementations of Rijndael have a greater block 
size and more columns in the state, AES operates on a 4x4 col-
umn-major order matrix of bytes called the state. The majority of
AES computations are performed in a finite field. It works with a 
number of rounds to convert the plaintext into ciphertext. Each 
round contains the following functions :(Shift Rows, Mix Col-
umns, and Add Round Key). It also uses the following functions 
(Inverse Mix Columns, Add Round Key, Inverse Substitute Bytes, 
and Inverse Shift Rows) to reverse the encryption process (con-
verting the ciphertext to the original text) depending on the key.
PRESENT: In 2007, Bogdanov, et al [34]proposed an algorithm 
for a lightweight block cipher. It is used in two situations: the 
desired low-power consumptions and high chip efficiency. It has 
particularly high performance in compact hardware implementa-
tion. The block cipher works in 31 rounds, depends on SP (Substi-
tution and Permutation) networks for implementation and supports 
two keys size 80 and 128 bits. The one round consists of an XOR 
operation, a bitwise permutation, and a nonlinear substitution, 
which consists of 4-bit input and 4-bit output (4 × 4) S-boxes, 
illustrated in Figure 1.5.  The design of PRESENT does not use 
the algebraic unit in the diffusion layer. As the result, it provides 
hardware efficiency in implementation.

Figure 1.5: Encryption/Decryption in PRESENT.

Hummingbird: Engels et al. designed Hummingbird [35],and 
Hummingbird-2 [29], [36]. It’s an ultra-lightweight cryptographic 
for encryption and authentication such as small hardware devices 
like RFID tags. The block size is 16 bits. It consists of 4 rounds 
and the last round only includes the key mixing and the S-box 
substitution steps. Like any other hybrid (structure), one round 
consists of three stages: a key mixing step, a substitution layer, 
and a permutation layer. This block size is suitable for constrained 
devices because it deals with small messages. Security is weak in 
hummingbird and hummingbird-2 because of the smaller size of 
the block.
PRINT-Cipher: Knudsen et al. [37] proposed the PRINT-cipher 
block code for IC printing as one of the low-constrained devices. 
It is built on an SP network design structure. There are two opera-
tions for cipher state: collecting a round key by using bitwise 
XOR and shuffling by fixed linear diffusion layer. Each S-box 
contains a 3-bit entry which is permuted in a key-dependent per-
mutation layer; lastly, the cipher state is mixed using a layer of b3 
nonlinear S-box substitutions, illustrated in Figure 1.6 for one 
round of PRINT- Cipher.
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Figure 1.6:PRINT Cipher (One Round).
KLEIN: According to Gong et al. [38], it is one of the newest 
Lightweight block ciphers. The block size is a fixed 64-bit and key 
length 64, 80 or 90-bits. It follows the Substitution-Permutation 
Network (SPN) architecture. The KLEIN cipher has a 4-bit S-box 
and operations to make mixes from the AES and from PRESENT 
as well. In the block cipher, the key length and block size refer to 
trade-offs between performance and security, considering security 
measured by block size and performance measured by key length. 
Figure 1.7 shows the structure of KLEIN.

Figure 1.7: Structure of KLEIN.

LED: It means (Lightweight Encryption Device), proposed by 
Guo et al. [39], in 2011. It is one of the newest lightweight ci-
phers. It provides security against all state-of-the-art attacks. The 
cipher state uses a 4-bits matrix to represent arranged concepts, 
with all nibble showing an element from GF (24) with a poly-
nomial as〖 x〗^4  + x + 1. The S-box in the LED is the same as 
the PRESENT. Also, the LED is the same as lightweight has func-
tion PHOTON and the architecture is based on the Substitution-
Permutation Network (SPN).
PRINCE: Borghoff et al. [40]state that the importance of 
PRINCE lightweight block cipher lies in taking low latency as the 
main priority. The internal construction of the block is based on 
the SPN architecture. The cipher with a slightly different key can 
provide decryption by reusing the encryption process. The block 
size 64 bits uses a 4-bit S-box.
HIGHT: Itmeans (high security and lightweight) proposed by 
Hong et al.[41]. The block cipher is an ARX based on a genera-
lized Feistel Structure (GFS). The block cipher uses the operations 
XOR and bitwise rotations for input, and XOR or addition modulo 
28 for output. The block cipher consists of 64-bit block size and 
key size 128-bit. Three functions to encrypt the entered text to-
gether with the key in HIGHT cipher (first transformation, round 
function and final transformation) see Figure 1.8.The Whitening-
keys and sub-keys are generated by the Key Schedule procedure. 
For the initial and final transformations, there are eight Whitening 
keys (WK7—WK0). For round functions, 128 subkeys (SK127—
SK0) are utilized in total, with four subkeys each round. The 
processes of coding and decoding in HIGHT are similar. 

Figure 1.8:Structure of HIGHT for Encryption/Decryption.

DESL & DESXL: DESL and DESXL (DES Lightweight) are 
proposed by Poschmann et al. [42]. The primary idea of DESL 
and SESXL is to reduce gate complexity to limit the size of hard-
ware. DESL and DESXL use only one single box rather than 8-
boxes from the original DES. DESL and DESXL by a single S-
box are strong against the attack and solve the weakness of DES. 
The security strength and reducing wiring costs are done by re-
main the original first permutation and its inverse. The block size 
64-bits and small key size 56-bits achieve limited protection. 
Thus, applications that possess short-term security DESL are de-
sired.
CLEFIA: Itis a lightweight block cipher that provides efficiency 
in implementations of hardware and software, proposed by Shirai 
et al. [43]. The CLEFIA block cipher has four branches from a 
generalized Feistel structure (GFS). CLEFIA has two round F-
functions, every function uses 32-bits per round.  Each branch 
consists of 32 bits to making block size 128 bits. The F-function 
process inputdividesthe 32-bits into two parts: (S) a substitution 
step leads to a simple S-box substitution and (D) a publishing step 
leads to a linear combination of substituted. CLEFIA uses this 
scenario to guarantee immunity against pioneer attacks.
KATAN and KTANTAN: They are two block ciphers proposed 
by De Cannièreet al.[36], [44] KATAN and KTANTAN for new 
family lightweight based on bivium stream cipher designed pro-
posed at [45]. This design has a structure called nonlinear feed-
back shift register (NLFSR) in Feistel structure. The block size of 
cipher is 32-, 48- and 64 bits and key length 80 bits. Utilization of 
the physical footprint is at the heart of these two designs, at the 
cost of some speed. KATAN is less compact than KTANTAN. 
KTANTAN does not change the key because it is used in devices 
that have a fixed key. The key schedule is the only difference 
between KATAN and KTANTAN.KATAN and KATANTAN use 
shift registers.Therefore, KATAN and KATANTAN are appropri-
ate for RFID devices [44].
LBlock: Wu and Zhang [46] in 2010 proposed for lightweight 
block cipher that uses Feistel Structure. The block LBlock has a 
64-bit block size and a key length of 80-bit.The LBlock has three 
Functions: encryption algorithm, decryption algorithm, and key 
scheduling. Every round in LBlock has two round functions: con-
fusion and diffusion (permutation of eight 4-bit words).Therefore, 
Feistel structures are suitable to minimize the number and size of 
the S-box. The one round of LBlock divided data into two parts: 
the first half goes through round function, and the second half 
applies simple rotation operation, therefore, the more round itera-
tion leads to security margins.
TWINE: According to Suzaki et al. [47], the block cipher has a 
64-bit block size and key length 80- and 128 bits. The structure 
that uses TWINE is a generalized Feistel structure (GFS) with 16 
branches. The Feistel function, called eight times per round, con-
sists of simply XORing a sub-key and the application of a 4-bit S-
box. In The TWINE, a round function has a nonlinear layer using 
4-bit S-boxes and a diffusion layer, which permutes the 16 blocks. 
The diffusion layer provides diffusion better because it does not 
use the circular shift in diffusion layer designs. 
SIMON: It is one of the families of block cipher lightweight as 
proposed by Beaulieu et al. [48]   in 2013. The structure SIMON 
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is a Feistel structure. It providesa target in hardware implementa-
tions to optimal performance. The block has sizes of variable 
lengths (32, 48, 64, 96,128) for keys of variable lengths (64, 72, 
96, 128, 144, 192, 256). The encryption and decryption block 
operates in rounds (32 and 72). The nonlinear function in SIMON 
uses a bitwise XOR operation and rotates (every round), making it 
suitable for hardware. Figure 1.9shows the work of the block of 
one round.
SPECK: It is one of the families of block cipher lightweight as 
proposed by Beaulieu et al. [48] in 2013. The structure SPECK is 
ARX. It provides a target in software implementations to optimal 
performance. The block operates with the same block size, key 
size and number of rounds as the block of Simon. The nonlinear 
function in SPECK uses the modular addition operation, XOR and 
rotate (every round), making it suitable for software. Figure 1.10 
shows the work of the block for one round.

Figure 1.9:Block of SIMON for One Round.

Figure 1.10:Block of SPECK for One Round.
Piccolo: According to Shibutani et al. [49],it is a new block cipher 
of lightweight. It is a generalized Feistel network (GFN). The 
Piccolo has block size 64-bits and 80- and 128-bits keys length. 
Piccolo achieves low power consumptions and high security, 
based on the design that is based on (half-word based round per-
mutation) and (permutation for key expanding). Therefore, it is 
suitable for sensor nodes and FRID devices.
LEA: According to Hong et al. [50], it means Lightweight block 
Encryption Algorithm. It was designed by the Electronics and 
Telecommunication Research Institute of Korea (ETRIK) for 
software-oriented. It can be implemented on different platforms. 
The software encryption in LEA is fast on most common proces-
sors. The operations in LEA are simple Rotation, XOR and Addi-
tion, and they do not use operation S-Box. It provides implemen-
tation with high efficiency in software/hardware.
QTL:According to Lang Li et al.[51], the structure used in QTL is 
a generalized Feistel structure. The QTL has a block size of 64-
bits with 46-bit or 128-bit keys length. The one round can process 
half the block message in Feistel structure, but QLT can change all 
messages. The QTL uses diffusion of the (SPNs) structure, which 
achieve security in Feistel-type structures. It reduces the power 
consumption and area and does not use the key schedule in de-
signing. It achieves high security and cost implementation in 
hardware.
Blowfish: It is a symmetric encryption technique, which means it 
encrypts and decrypts communications using the same secret key. 
It is a hybrid architecture. It separates the data (plaintext) into 64-
bit blocks of predetermined size. It can handle a wide range of 
variable size lengths, from 32 bits to 448 bits. In Figure 1.11 we 
notice P boxes are employed in the F-function to implement each 
round of the blowfish block [52]. P boxes are 32 bits in size and 
there is a total of 18 of them.

Figure 1.11: Block of Blowfish.
BORON:Bansod et al. [53] suggested an LWC technique based 
on SPN. It supports 128/80 key bits along with a 64-bit plaintext 
block. It is based on a total of 25 rounds, where the 4-bit to 4-bit 
S-boxes are used, followed by round shift, permutations, and XOR 
operations. It is also immune to attacks, differential and linear. 
LiCi: Patil et al. [54] suggested an LW block cipher algorithm. It 
considers 31 consecutive rounds paired with 4 × 4 LW S-boxes. 
The cipher LiCi is a balanced network of Feistel structure, and its 
architecture supports 128 bits key for 64-bits plaintext.

1.7 Performance Analysis
FELICS tool (described in the previous section) can extract mea-
surements (code size, memory, execution time (for encryp-
tion/decryption)). These are lightweight algorithm measurements 
(capable of running on IoT devices with high efficiency). A mea-
surement (code size, memory, and execution time (for encryp-
tion/decryption)) whose value is lower is considered better.Table 
1.3 and Figure 1.12, explain the lightweight algorithms as well as 
the values extracted by the FELICS tool for measurements (code 
size, memory, and execution time (encoding/decoding)). On an 
LW device, the code size of ciphers has an impact on perfor-
mance. Most LW devices, such as microcontroller chips, embed-
ded devices, RFID tags, and so on, have enough memory (for 
example, flash memory) to store cryptographic algorithms. From 
Figure 1.1٣, the algorithms PRINCE, LBLOCK, and AES have 
the highest values in code size, while the algorithms RoadRunneR, 
PICCOL and TWINE have the lowest values in code size, respec-
tively.
Table 1.3: Results for Common Cipher Implementations on AVR 

Architecture in FELICS Tools

Figure 1.12: Comparison Analysis in Terms of Code Size, RAM, 
andEncryption/Decryption (Cycles).
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Figure 1.1٣: Different Ciphers are Compared in Terms of Code 
Size.

The RAM for LW devices is restricted, the utilized RAM size of 
the ciphers is critical for speed. As a result, the most efficient ci-
phers are those that require the least amount of RAM when run-
ning like PICCOL, RoadRunneR, and PRINCE, as shown in Fig-
ure 1.14. Another case is between the two algorithms (HIGHT and 
LED). The HIGHT requires a higher code size in encryption and 
decryption and requires less memory expenditure compared to the 
LED algorithm (which needs the opposite). Due to the increased 
number of rounds in these ciphers, usually, rounds (3 to 20) must 
be in the algorithm for the encryption to be lightweight while re-
taining the strength of the algorithm. As a result, LED is superior 
to HIGHT since it uses less memory for devices of IoT. The secu-
rity strength of a cipher is dependent on the complexity of calcula-
tions, which is a problem. However, there is a balance to be struck 
between security and complexity.

Figure 1.14: Different Ciphers are Compared in Terms of RAM.

In Figures 1.15, 1.16 the execution time (encoding / decoding 
cycles) should require the lowest values, because it is related to 
the process of power consumption (the higher the execution time, 
the higher the power consumption). Because the gadgets with 
limited resources(IoT devices) are battery-operated, they are low-
powered. As a result, power consumption should be kept to a min-
imum, yet cipher security should be adequate. In other words, 
there is a trade-off between security and lightweight. The security 
of a cipher is entirely dependent on the keys used to encode and 
decode each message block. Therefore, one of the most important 
operations in encryption is the process of key generation (it must 
be complex) because it is used in all cycles of encryption and de-
cryption. However, its complexity (arithmetic) does not affect the 
performance of devices when encrypting or decrypting the block 
data. We note that the HIGHT, RoadRunneR and LBlock are few-
er in the number of execution cycles (less energy consumption). 
But HIGHT has a higher execution of master scheduling cycles 
than the rest of the blocks (RoadRunneR and LBlock) and this is 
due to the complexity of the key generation process in the HIGHT 
block.

Figure 1.15: Execution Time (Cycle) for Multiple Ciphers in the 
Varying Block of Encryption.

Figure 1.16: Execution Time (Cycle) for Multiple Ciphers in the 
Varying Block of Decryption.

The power use of the algorithm is measured by the following equ-
ation [55] (1.1):

E=I * VCC* Ʈ*N         (1.1)
Here, VCC is the supply voltage of the system. I is the average 
current in amperes in which T is consumed in seconds.
Ʈ is the clock period. N is the number of the clock cycle. So, the 
clock period is Ʈ=1/f  Sec/Cycle. Atmel Atmega128 (AVR) typi-
cally takes voltage in the range of 2.7~5.5, current 20 mA on av-
erage, and also runs at 16 MHz. Figure 2.17 displays the compari-
son of power usage among current ciphers with the suggested 
cipher

Figure 1.17: Power Consumption of Ciphers.
1.8 Trends of Design for LWC Algorithm

Smart and light technologies are modern trends for the world that 
use devices such as RFID, sensor and embedded systems. As a 
consequence, researchers have been developing and proposing a 
range of cryptographic algorithms to suit these devices.The NIST 
provides an LWC project that describes the issues and develops a 
technique for the standardization of lightweight cryptographic 
algorithms.In this project, numerous metrics were identified to 
evaluate the lightweight properties, in hardware implementation 
chip size (area or resource) and/or energy consumption (perfor-
mance), and in software implementation code size, RAM si-
zeand/or execution time (This is our field of study).To provide 
knowledge for selecting or determining cipher of LWC in design 
directions, the following are required: 
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 Block size and key length: Large block and key size cannot 
achieve space reduction. Memory is affected by large block size 
and large key size; therefore, it must block the size and key size 
which must be small to save memory. For instance,the block size 
in lightweight block ciphers should be (64 bits or 80 bits) not as 
the block size that is used in a conventional AES (128 bits). Key 
sizes in lightweight block ciphers should be (less than 96 bits). 
The key size acceptable by NIST is less than 112-bit and is equal 
to or more than 64-bits [56], as PRESENT of 80-bit. On the other 
hand, various issues of security, if we use a block size less than 32 
bits, the birthday attacks will be possible. Blocks of 64-bit and 
keys size of 80-bit are popular parameters for ciphers of 
lightweight.

 Key schedule:Uses simple key schedules in most of the 
lightweight block ciphers to save power consumption, latency and 
memory. As a result, some attacks can be possible to get keys 
during generating sub-keys such as weak keys and related keys but 
can prevent these attackers by using key derivation function 
(KDF) of security, described in [57], [58] and [59]. When the se-
curity level is not more important than the implementation cost, 
for applications, the good selection is a simple key schedule and 
Feistel structure, SPNs, and a simple key schedule when moderate 
security is the best choice.
 Simpler rounds: To save area, the S-boxes operations in 
lightweight blocks use 4-bit S-boxes while conventional blocks 
use 8-bit S-boxes.
 Minimal implementations: Uses of resources: encryption and 
decryption are not required for all applications. Some applications 
need either encryption or decryption operations. The block cipher 
functions use fewer resources.
 A combination of Feistel, SP and more architectural 
methods increases the complexity of the encryption.
 Thealgorithms(designed) flexibility is decently efficient on a 
wide range of 8-bit Micro-controllers.

1.9 Conclusion
The current review in terms of IoT security.First, knowledge of 
the Internet of things and its applications and knowledge of the 
security required for this study is presented. Second, the general 
standards required for lightweight algorithms (which work on 
Internet of Things devices) are discussed. Then, a general study of 
algorithms in the field of the Internet of Things is provided. And 
finally, the recommendations that must be followed to design 
lightweight algorithms that work on Internet of Things devices 
and apply them in this paper are highlighted.
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