
A scientific refereed journal issued by the Faculty of Education- Hodeidah University-Yemen, ISSN-Print: 2958-9975 ISSN-Online: 2958-9983

Abhath Journal of Basic and Applied Sciences., 1(2) (2022) 18-26

Abhath Journal of Basic and Applied Sciences
Website:https://ojs.abhath-ye.com/index.php/OJSRJBAS/about

doi:
Research paper, Short communication, Review, Technical paper

Securing the Internet of Things: A review of Lightweight and low-power
Cryptography Techniques

Abdulrazzaq H.A. Al-ahdal1*, Mouad M.H. Ali1, Abdullah Alahdal2, Arafat S.M. Qaed1, Galal A. Al-Rummana1

1Assistant Professor,Computer Science, Faculty of Computer Science & Engineering, Hodeidah University, Yemen
2CSE Department,University College of Engineering, Osmania University,India

*Corresponding author E-mail: alahdal201211@gmail.com

Received: 07 November 2022, Accepted: 15 December 2022, Published: 30 December 2022

Abstract
The current information related to security and IoT by conducting a theoretical and methodological study. It provides a detailed expla-
nation on what is the meaning of IoT and on the various applications in IoT. It also presents the major issue of the security of IoT for
applications. Moreover, the chapter discusses the metrics that define lightweight algorithms in hardware and software, and it presents
the reasons for choosing blocks in lightweight algorithms and studying the architecture of those blocks. It also refers to the
blocks/algorithms, both the traditional ones and the lightweight ones.

Keywords: Symmetric Cryptography, Lightweight Cryptography, Block Cipher, IoT.

1. Introduction
In the recent decade, the world has been more networked with

many variousdevices, such as sensors, smart networking, RFID
and IoT, to achieve numerous activities[1]. Currently, IoT is a
current technology of smart objects. Laptop, Telephone,
Car,Refrigerator are tangible devices known as smart things. IoT
is a network of devices ofsmart items which are identified, access-
ible and controlled by a network of devices. Theyare also able to
compute and make decisions. IoT is a worldwide network with
dynamiccapabilities that employ standard communication systems.
It can operate on actual andvirtual items. It has intelligent plat-
forms for the usage which are readily incorporated into communi-
cation technologies [2].In IoT systems, the objects when con-
nected to each other, have restrictions contrasted to Personal
Computers. These limits might be displayed in power consump-
tion,execution time and memory cost. These constraints are inef-
fective on personal Computers[3].On the other hand, security is
the process of safeguarding data when they are communicated and
shared among objects. Therefore, the data security service is
represented in authorization, confidentiality, authentication, and
integrity. The security saves data during dissemination in IoT so
that it cannot be corrupted or manipulated. Therefore, the security
service can be given by cryptography [4]. Cryptography is an
essential technique (algorithms) in security that may be characte-
rized as turning original text(plain-text) into mystery-text (cipher-
text) and reversing from mysterious-text (cipher-text) into origi-
nal-text(plain-text). These functions are termed encoding and de-
coding [5]. Different algorithms such as AES, and DES are tradi-
tional cryptographic algorithms.AES is one of the most important
algorithms in cryptography and can be implemented on different
platforms [6]. It has a block size of 128 bits and a key length of
128,192, 256 bits. DES contains a 56-bit key for 64-bit block en-
cryption. The key in DES is smaller than AES [7], so the security
of DES is lower than AES[8]. Traditional encryption algorithms
provide high security, but they consume high processing and large

consumption of memory as well as power. On this basis, tradition-
al encryption is not suitable for small size devices with limited
resources (those devices that work in the Internet of Things). The
increase in processors, power consumption and memory cost in
traditional encryption lead to the emergence of a new encryption
called lightweight cryptography (LWC). This encryption reduces
the cost of memory usage and also reduces power to be suitable
for devices with limited resources (those devices that work in the
Internet of Things).

LWC is the new trend in encryption for resource-limited de-
vices. This is due to the use of simple mathematical operations,
lower memory cost, and lower power consumption. In another
way, it can make a trade-off between security, performance, and
cost, see Figure 1.1. The purpose of LWC is to minimize the total
costs of traditional encryption implementation by focusing on
numerous factors such as code size, memory cost, execution time
and energy usage.

Figure 1.1: Cost, Performance and Security.

19 Abhath Journal of Basic and Applied Sciences

1.1 IoT Overview
The Internet of Things (IoT) is a network of interconnected

items, each with its own unique identifier, that may gather and
share data via the Internet with or without human participation [9]-
[13]. All these applications are interconnected to exchange data
through the Internet (network of Internet of things). The amount of
data will be very large between these devices.

Internet of Things (Smart Home, IoT Wearable’s, Smart Grid,
Connected Cars, smart healthcare, Smart Cities, Health Care,
Smart Farming, and industry 4.0) applications have become very
important in our daily life. For this reason, they have become the
focus of researchers. See Figure 1.2 and Table 1.1

Figure 1.2:IoT Applications.
In the year 2021, the number of connected devices will be about
20 billion devices in the Internet of Things. As we mentioned
earlier, the data that will be generated between them is very large
to communicate with each other. In this scenario, we note the
great development of Internet of Things technology, which
enables it to manage and control these devices. We will also note
the flexibility and ease in the way of managing the data collection
provided by the Internet of Things from applications.

Table1.1:Applications of Internet of Things

1.2 IoT Security
In the Internet of Things systems, the shift is from desktop com-
puters to small-sized computing devices with limited resources.
The interconnection of these small devices via the Internet and
across many networks, the exchange of large data, leads to an
unprecedented challenge for those users by securing that data [14],
[15]. In addition, because IoT devices interact directly with the
actual world to gather sensitive data or regulate physical environ-
ment variables, they are easily accessible and vulnerable to several
security assaults[16], making them an appealing target for attack-
ers [17]. With demands of confidentiality, data integrity, authenti-
cation & authorization, availability, privacy & regulation require-
ments, and frequent system upgrades, all of these factors make
cyber-security a serious concern in IoT devices [18]. Cryptogra-
phy might be one of the most effective techniques in this circums-
tance to ensure the secrecy, integrity, authentication, and authori-

zation of data transiting across IoT devices [15]. Cryptography
might potentially be used to safeguard data that is stored or sent
via a network. Traditional PC-based cryptography solutions, on
the other hand, are not suited for most IoT devices, such as sensors
and RFID tags, owing to resource constraints. This problem can be
solved with a lighter version of these methods.

1.4 Measurement of Evaluation LWC
Despite extensive study in programming and equipment used

for hardware and software implementation, the results demonstrate
that the association between them is difficult to establish due to
differences in the execution platform [18].

1.4.1 Hardware Implementation

Given that the hardware is the first, the major measurements
are memory utilization, code size, and energy usage. Any
lightweight cryptography can only be measured by a particular
type of circuit. However, various techniques produce varied simu-
lation results. As a result, there is no way to compare how differ-
ent algorithms are implemented in hardware. In terms of memory
use, lightweight primitives should use smaller blocks with smaller
keys. However, rather than using read/write memory, “burning”
keys onto devices use read-only structures. It allows the key sche-
dule to use just the master keys for basic tasks. Energy economy is
at the heart of hardware implementation, and latency, or the time it
takes to perform a certain operation, is one of the factors used to
build lightweight block ciphers.

1.4.2 Software Implementation

Lightweight cryptography (LWC) has integrated crucial me-
trics such as RAM use, code size, and throughput (execution time)
in bytes per cycle. The FELICS (Fair Evaluation of Lightweight
Cryptographic Systems) framework compares the performance of
several lightweight algorithms across different implementations
using a variety of measures. The FELICS test for three micro-
controllers: 8-bit AVR, 16-bit MSP, and 32-bit ARM-based for all
cipher. But we use a framework that supports the AVR ATme-
ga128 (8-bit AVR). Table 1.2 explains all the characteristics of the
target devices [19]. FELICS is extremely extensible, allowing it to
be used to benchmark new lightweight primitives, extract new
metrics, collect performance data for additional target devices, and
assess implemented algorithms in new use scenarios [20].

Table 1.2: Key Characteristics of the Three Microcontrollers Used
by FELICS[20].

1.4.2.1 Metrics

Here we will explain the lightweight metrics that are extracted
from the FELICS software simulation for IoT applications. In this
version, the power consumption parameter is not extracted be-
cause it is closely related to the basic parameters. For each opera-
tion needed by the respective module separately, as well as for all
operations together, detailed and precise data are provided. Em-
bedded software engineers may utilize the entire findings to de-
termine which cipher operations should be implemented for a
given device and application. Because of their usefulness, cycle-
accurate and free software simulators of the target embedded de-
vices are favored over-development boards. While a software
simulator is simple to download and install, a development board
requires purchase and configuration.

20 Abhath Journal of Basic and Applied Sciences

1.4.2.2 Code Size

The code size is expressed in bytes and indicates how much space
an operation takes up in the target device's non-volatile memory
(for example, flash memory).The frameworks employ the GNU
size tool to extract the code size for each target device, which lists
the section sizes as well as the overall size in bytes for a specific
binary file.

1.4.2.3 RAM

The RAM usage is divided into two categories: stack and data.
After interruptions and subroutine calls, the stack consumption
shows how much RAM was utilized to hold local variables and
the return address. The static RAM need is determined by the size
of the constants stored in the target device's RAM. It contains
information relevant to each case, such as the data to encrypt, the
master key, round keys, and initialization vectors. Because the
framework doesn't allow for dynamically allocated variables, the
heap isn't utilized at all.

1.4.2.4 Execution Time

The number of CPU clock cycles spent executing a particular
operation is measured by the execution time. Either cycle-accurate
software simulators of the target microcontrollers or development
boards are used to derive the metric. The execution time is calcu-
lated by dividing the number of cycles in the system timer at the
end of the measured operation by the number of cycles in the sys-
tem timer at the start of the measured operation.

1.5 Why Symmetric Block Cipher?
The sharing of information necessitates secure and efficient

encryption/decryption, which includes both symmetric and asym-
metric encryptions. Asymmetric ciphers have great security prop-
erties, but they are more costly owing to additional computational
processes [21]. In general, there are two types of block ciphers:
symmetric and asymmetric. Both encoding and decoding take
place on a fixed-size block (64 bits or more) at a time in a block
cipher, but stream cipher processes the entire message byte by
byte (8 bits at a time). Furthermore, stream cipher solely uses the
confusion attribute (to use substitution between the ciphertext and
the key to make the relationship as complicated as feasible). Block
cipher, on the other hand, employs both confusion and dispersion
(to use permutation to diffuse the statistical structure of plaintext
throughout the bulk of ciphertext [22]).With a block cipher, re-
versing encrypted text is difficult. However, in a stream cipher,
the encryption is done via XOR, which can be readily reversed to
plain text. Hash function, on the other hand, is a mathematical
process that converts data of any size into a bit string of a prede-
termined length hash (short). Inverting a one-way function is im-
possible. For these reasons, a block cipher is favored over a stream
cipher in IoT devices, and this study focuses on the block cipher.
One of the following structures is used in symmetric lightweight
block cipher:

 Substitution-Permutation Network (SPN)

 Feistel Network (FN)

 General Feistel Network (GFN)

 Add-Rotate-XOR (ARX)

 NonLinear-Feedback Shift Register (NLFSR)

 Hybrid.

SPN and FN are the most common structures because of their
versatility in terms of implementing the structure based on appli-
cation needs [23]. Because a round function is applied to just one-
half of the state, Feistel structures could well be built with low
average power hardware [24].In contrast to SPN structures, Feistel
structures use non-linearity in just one-half of the state in each

round, hence preserving safety margins generally necessitates a
larger round function. When a decision is made between fewer
SPN function rounds and more Feistel function rounds with the
same level of security and equivalent energy costs, the SPN func-
tion may be the better option [24].

1.5.1 Feistel Network

The construction of a block cipher in a Feistel cipher uses asym-
metric structure in cryptography. Feistel cipher proposed a strong
cipher that alternates substitutions (S-boxes) and permutations (P-
boxes). Encryption and decryption operations in the Feistel struc-
ture are similar in some cases, requiring a reversal of the key
schedule. Therefore, the block cipher requires the implementation
of half the size of the code and the circuit. The operation is illu-
strated in the Feistel cipher in Figure 1.3. The round function is F,
and the sub key is K0,…, Kn for the rounds 0, 1, …, n respective-
ly. The operation encryption, divided the plaintext into equal (L0,
R0):

For each round i = 0, 1, …, n compute

L i + 1 = R i

R i + 1 = L i⊕ F (Ri, K i)

Then the ciphertext is (R n + 1, L n + 1)

The operation Decryption: a ciphertext (R n + 1, L n + 1)

Computing for i = n, n − 1, …, 0

R i = L i + 1

L i = R i + 1⊕ F (Li + 1 , K i) .

Then (L0, R0) is the plaintext again.

The round function F in Feistel structure must not be invertible
compared to SP-Structure. This is an advantage of Feistel structure
[25], [26].

Figure 1.3: Encryption and Decryption Feistel Structure.

1.4.1 Generalized Feistel Network

The generalized Feistel Network (GFN) is a more advanced ver-
sion of the Feistel cipher. In GFN, the input block is split into two
or more sub-blocks, with each sub-block receiving a (classical)
Feistel transformation, followed by a cyclic shift proportional to
the number of sub-blocks [27].

1.4.2 SP-network structure

Block cipher in SP-network, uses a chain of associated mathemat-
ical operations in cryptography. The operations in SP-network are
several rounds or “layers" of substitution boxes (S-boxes) and
permutation boxes (P-boxes). The S-boxes and P-boxes perform
efficiently in hardware, such as XOR and bitwise that transfer
blocks of input bits into output bits. The key is used in each round.
S-boxes depend on the key. The output of an S-box substitute is an
input for another S-box to ensure decryption. In particular, the

21 Abhath Journal of Basic and Applied Sciences

length of input and output should be the same, as illustrated in
Figure 1.4. A P-box is a mix for all output of each S-box of one
round, and make it inputs to S-boxes of the next round. In each
round, it uses XOR between input/output from using S-boxes and
P-boxes and key. In cryptographic strength, it uses S-box and P-
box togetherto satisfy confusion and diffusion properties [28],
[29].

Figure 1.4: SP-Network 2 Rounds Encrypting Plaintext Block 16
Bit.

1.4.3 Nonlinear Feedback Shift Register (NLFSR)
The NLFSR is a kind of nonlinear feedback shift register that may
be used in both stream and block ciphers. It makes use of stream
cipher building components whose present state is a nonlinear
feedback function of their prior state [30].

1.4.4 Hybrid Architecture
Hybrid ciphers combine any two or more kinds (FN, SPN, GFN,
NLFSR, ARX) to increase certain characteristics (for example,
Code Size (reduces) Memory (reduces), energy (reduces), and so
on) according to application needs, or even blend block and
stream ciphers.

1.5 Lightweight Block cipher: definition
The general purpose of the block cipher is to provide a semi-
random flipping that builds complex protocols. There are several
definitions for the lightweight block cipher. In [31], it is an appro-
priate implementation for low-resource devices, and it treats chal-
lenges such as: reduce overhead (silicon area or memory used),
low-energy consumption, and sufficient security. Some research-
ers adopted certain characteristics to define lightweight ciphers
[32].To design a lightweight cipher, such requirements must be
met as follows:

 Smaller block sizes: To keep a memory, block size in
lightweight block ciphers should be (64 bits or 80 bits)
not as block size used in a conventional AES (128 bits).

 Smaller key sizes: For efficiency, key sizes in
lightweight block ciphers should be (less than 96 bits)

 Simpler rounds: To save area, the S-boxes operations
in lightweight block use 4-bit S-boxes. Whereas conven-
tional blocks use 8-bit S-boxes.

 Simpler key schedules: To save power consumption,
latency and memory, key schedules simple should be
used in most of the lightweight block ciphers.

Minimal implementations: Uses of resources: encryption and
decryption are not required for all applications. Some applications
only support encryption or decryption operations. The block ci-
pher function uses fewer resources.

1.6 Common Lightweight Block Ciphers

AES (Advanced Encryption Standard): It is one of the most
important algorithms in cryptography designed by Daemen and
Rijmen [33]. It has a block size of 128 bits and key length
(128,192, 256) bits. It is built on SP network design philosophy,
which combines both substitution and permutation, and is faster in
both hardware and software. The algorithm possesses excellent

properties, flexible in execution, and also offers high security. But
it becomes an obstacle to the hardware limited resources. Al-
though certain implementations of Rijndael have a greater block
size and more columns in the state, AES operates on a 4x4 col-
umn-major order matrix of bytes called the state. The majority of
AES computations are performed in a finite field. It works with a
number of rounds to convert the plaintext into ciphertext. Each
round contains the following functions :(Shift Rows, Mix Col-
umns, and Add Round Key). It also uses the following functions
(Inverse Mix Columns, Add Round Key, Inverse Substitute Bytes,
and Inverse Shift Rows) to reverse the encryption process (con-
verting the ciphertext to the original text) depending on the key.
PRESENT: In 2007, Bogdanov, et al [34]proposed an algorithm
for a lightweight block cipher. It is used in two situations: the
desired low-power consumptions and high chip efficiency. It has
particularly high performance in compact hardware implementa-
tion. The block cipher works in 31 rounds, depends on SP (Substi-
tution and Permutation) networks for implementation and supports
two keys size 80 and 128 bits. The one round consists of an XOR
operation, a bitwise permutation, and a nonlinear substitution,
which consists of 4-bit input and 4-bit output (4 × 4) S-boxes,
illustrated in Figure 1.5. The design of PRESENT does not use
the algebraic unit in the diffusion layer. As the result, it provides
hardware efficiency in implementation.

Figure 1.5: Encryption/Decryption in PRESENT.

Hummingbird: Engels et al. designed Hummingbird [35],and
Hummingbird-2 [29], [36]. It’s an ultra-lightweight cryptographic
for encryption and authentication such as small hardware devices
like RFID tags. The block size is 16 bits. It consists of 4 rounds
and the last round only includes the key mixing and the S-box
substitution steps. Like any other hybrid (structure), one round
consists of three stages: a key mixing step, a substitution layer,
and a permutation layer. This block size is suitable for constrained
devices because it deals with small messages. Security is weak in
hummingbird and hummingbird-2 because of the smaller size of
the block.
PRINT-Cipher: Knudsen et al. [37] proposed the PRINT-cipher
block code for IC printing as one of the low-constrained devices.
It is built on an SP network design structure. There are two opera-
tions for cipher state: collecting a round key by using bitwise
XOR and shuffling by fixed linear diffusion layer. Each S-box
contains a 3-bit entry which is permuted in a key-dependent per-
mutation layer; lastly, the cipher state is mixed using a layer of b3
nonlinear S-box substitutions, illustrated in Figure 1.6 for one
round of PRINT- Cipher.

22 Abhath Journal of Basic and Applied Sciences

Figure 1.6:PRINT Cipher (One Round).
KLEIN: According to Gong et al. [38], it is one of the newest
Lightweight block ciphers. The block size is a fixed 64-bit and key
length 64, 80 or 90-bits. It follows the Substitution-Permutation
Network (SPN) architecture. The KLEIN cipher has a 4-bit S-box
and operations to make mixes from the AES and from PRESENT
as well. In the block cipher, the key length and block size refer to
trade-offs between performance and security, considering security
measured by block size and performance measured by key length.
Figure 1.7 shows the structure of KLEIN.

Figure 1.7: Structure of KLEIN.

LED: It means (Lightweight Encryption Device), proposed by
Guo et al. [39], in 2011. It is one of the newest lightweight ci-
phers. It provides security against all state-of-the-art attacks. The
cipher state uses a 4-bits matrix to represent arranged concepts,
with all nibble showing an element from GF (24) with a poly-
nomial as〖 x〗^4 + x + 1. The S-box in the LED is the same as
the PRESENT. Also, the LED is the same as lightweight has func-
tion PHOTON and the architecture is based on the Substitution-
Permutation Network (SPN).
PRINCE: Borghoff et al. [40]state that the importance of
PRINCE lightweight block cipher lies in taking low latency as the
main priority. The internal construction of the block is based on
the SPN architecture. The cipher with a slightly different key can
provide decryption by reusing the encryption process. The block
size 64 bits uses a 4-bit S-box.
HIGHT: Itmeans (high security and lightweight) proposed by
Hong et al.[41]. The block cipher is an ARX based on a genera-
lized Feistel Structure (GFS). The block cipher uses the operations
XOR and bitwise rotations for input, and XOR or addition modulo
28 for output. The block cipher consists of 64-bit block size and
key size 128-bit. Three functions to encrypt the entered text to-
gether with the key in HIGHT cipher (first transformation, round
function and final transformation) see Figure 1.8.The Whitening-
keys and sub-keys are generated by the Key Schedule procedure.
For the initial and final transformations, there are eight Whitening
keys (WK7—WK0). For round functions, 128 subkeys (SK127—
SK0) are utilized in total, with four subkeys each round. The
processes of coding and decoding in HIGHT are similar.

Figure 1.8:Structure of HIGHT for Encryption/Decryption.

DESL & DESXL: DESL and DESXL (DES Lightweight) are
proposed by Poschmann et al. [42]. The primary idea of DESL
and SESXL is to reduce gate complexity to limit the size of hard-
ware. DESL and DESXL use only one single box rather than 8-
boxes from the original DES. DESL and DESXL by a single S-
box are strong against the attack and solve the weakness of DES.
The security strength and reducing wiring costs are done by re-
main the original first permutation and its inverse. The block size
64-bits and small key size 56-bits achieve limited protection.
Thus, applications that possess short-term security DESL are de-
sired.
CLEFIA: Itis a lightweight block cipher that provides efficiency
in implementations of hardware and software, proposed by Shirai
et al. [43]. The CLEFIA block cipher has four branches from a
generalized Feistel structure (GFS). CLEFIA has two round F-
functions, every function uses 32-bits per round. Each branch
consists of 32 bits to making block size 128 bits. The F-function
process inputdividesthe 32-bits into two parts: (S) a substitution
step leads to a simple S-box substitution and (D) a publishing step
leads to a linear combination of substituted. CLEFIA uses this
scenario to guarantee immunity against pioneer attacks.
KATAN and KTANTAN: They are two block ciphers proposed
by De Cannièreet al.[36], [44] KATAN and KTANTAN for new
family lightweight based on bivium stream cipher designed pro-
posed at [45]. This design has a structure called nonlinear feed-
back shift register (NLFSR) in Feistel structure. The block size of
cipher is 32-, 48- and 64 bits and key length 80 bits. Utilization of
the physical footprint is at the heart of these two designs, at the
cost of some speed. KATAN is less compact than KTANTAN.
KTANTAN does not change the key because it is used in devices
that have a fixed key. The key schedule is the only difference
between KATAN and KTANTAN.KATAN and KATANTAN use
shift registers.Therefore, KATAN and KATANTAN are appropri-
ate for RFID devices [44].
LBlock: Wu and Zhang [46] in 2010 proposed for lightweight
block cipher that uses Feistel Structure. The block LBlock has a
64-bit block size and a key length of 80-bit.The LBlock has three
Functions: encryption algorithm, decryption algorithm, and key
scheduling. Every round in LBlock has two round functions: con-
fusion and diffusion (permutation of eight 4-bit words).Therefore,
Feistel structures are suitable to minimize the number and size of
the S-box. The one round of LBlock divided data into two parts:
the first half goes through round function, and the second half
applies simple rotation operation, therefore, the more round itera-
tion leads to security margins.
TWINE: According to Suzaki et al. [47], the block cipher has a
64-bit block size and key length 80- and 128 bits. The structure
that uses TWINE is a generalized Feistel structure (GFS) with 16
branches. The Feistel function, called eight times per round, con-
sists of simply XORing a sub-key and the application of a 4-bit S-
box. In The TWINE, a round function has a nonlinear layer using
4-bit S-boxes and a diffusion layer, which permutes the 16 blocks.
The diffusion layer provides diffusion better because it does not
use the circular shift in diffusion layer designs.
SIMON: It is one of the families of block cipher lightweight as
proposed by Beaulieu et al. [48] in 2013. The structure SIMON

23 Abhath Journal of Basic and Applied Sciences

is a Feistel structure. It providesa target in hardware implementa-
tions to optimal performance. The block has sizes of variable
lengths (32, 48, 64, 96,128) for keys of variable lengths (64, 72,
96, 128, 144, 192, 256). The encryption and decryption block
operates in rounds (32 and 72). The nonlinear function in SIMON
uses a bitwise XOR operation and rotates (every round), making it
suitable for hardware. Figure 1.9shows the work of the block of
one round.
SPECK: It is one of the families of block cipher lightweight as
proposed by Beaulieu et al. [48] in 2013. The structure SPECK is
ARX. It provides a target in software implementations to optimal
performance. The block operates with the same block size, key
size and number of rounds as the block of Simon. The nonlinear
function in SPECK uses the modular addition operation, XOR and
rotate (every round), making it suitable for software. Figure 1.10
shows the work of the block for one round.

Figure 1.9:Block of SIMON for One Round.

Figure 1.10:Block of SPECK for One Round.
Piccolo: According to Shibutani et al. [49],it is a new block cipher
of lightweight. It is a generalized Feistel network (GFN). The
Piccolo has block size 64-bits and 80- and 128-bits keys length.
Piccolo achieves low power consumptions and high security,
based on the design that is based on (half-word based round per-
mutation) and (permutation for key expanding). Therefore, it is
suitable for sensor nodes and FRID devices.
LEA: According to Hong et al. [50], it means Lightweight block
Encryption Algorithm. It was designed by the Electronics and
Telecommunication Research Institute of Korea (ETRIK) for
software-oriented. It can be implemented on different platforms.
The software encryption in LEA is fast on most common proces-
sors. The operations in LEA are simple Rotation, XOR and Addi-
tion, and they do not use operation S-Box. It provides implemen-
tation with high efficiency in software/hardware.
QTL:According to Lang Li et al.[51], the structure used in QTL is
a generalized Feistel structure. The QTL has a block size of 64-
bits with 46-bit or 128-bit keys length. The one round can process
half the block message in Feistel structure, but QLT can change all
messages. The QTL uses diffusion of the (SPNs) structure, which
achieve security in Feistel-type structures. It reduces the power
consumption and area and does not use the key schedule in de-
signing. It achieves high security and cost implementation in
hardware.
Blowfish: It is a symmetric encryption technique, which means it
encrypts and decrypts communications using the same secret key.
It is a hybrid architecture. It separates the data (plaintext) into 64-
bit blocks of predetermined size. It can handle a wide range of
variable size lengths, from 32 bits to 448 bits. In Figure 1.11 we
notice P boxes are employed in the F-function to implement each
round of the blowfish block [52]. P boxes are 32 bits in size and
there is a total of 18 of them.

Figure 1.11: Block of Blowfish.
BORON:Bansod et al. [53] suggested an LWC technique based
on SPN. It supports 128/80 key bits along with a 64-bit plaintext
block. It is based on a total of 25 rounds, where the 4-bit to 4-bit
S-boxes are used, followed by round shift, permutations, and XOR
operations. It is also immune to attacks, differential and linear.
LiCi: Patil et al. [54] suggested an LW block cipher algorithm. It
considers 31 consecutive rounds paired with 4 × 4 LW S-boxes.
The cipher LiCi is a balanced network of Feistel structure, and its
architecture supports 128 bits key for 64-bits plaintext.

1.7 Performance Analysis
FELICS tool (described in the previous section) can extract mea-
surements (code size, memory, execution time (for encryp-
tion/decryption)). These are lightweight algorithm measurements
(capable of running on IoT devices with high efficiency). A mea-
surement (code size, memory, and execution time (for encryp-
tion/decryption)) whose value is lower is considered better.Table
1.3 and Figure 1.12, explain the lightweight algorithms as well as
the values extracted by the FELICS tool for measurements (code
size, memory, and execution time (encoding/decoding)). On an
LW device, the code size of ciphers has an impact on perfor-
mance. Most LW devices, such as microcontroller chips, embed-
ded devices, RFID tags, and so on, have enough memory (for
example, flash memory) to store cryptographic algorithms. From
Figure 1.1٣, the algorithms PRINCE, LBLOCK, and AES have
the highest values in code size, while the algorithms RoadRunneR,
PICCOL and TWINE have the lowest values in code size, respec-
tively.
Table 1.3: Results for Common Cipher Implementations on AVR

Architecture in FELICS Tools

Figure 1.12: Comparison Analysis in Terms of Code Size, RAM,
andEncryption/Decryption (Cycles).

24 Abhath Journal of Basic and Applied Sciences

Figure 1.1٣: Different Ciphers are Compared in Terms of Code
Size.

The RAM for LW devices is restricted, the utilized RAM size of
the ciphers is critical for speed. As a result, the most efficient ci-
phers are those that require the least amount of RAM when run-
ning like PICCOL, RoadRunneR, and PRINCE, as shown in Fig-
ure 1.14. Another case is between the two algorithms (HIGHT and
LED). The HIGHT requires a higher code size in encryption and
decryption and requires less memory expenditure compared to the
LED algorithm (which needs the opposite). Due to the increased
number of rounds in these ciphers, usually, rounds (3 to 20) must
be in the algorithm for the encryption to be lightweight while re-
taining the strength of the algorithm. As a result, LED is superior
to HIGHT since it uses less memory for devices of IoT. The secu-
rity strength of a cipher is dependent on the complexity of calcula-
tions, which is a problem. However, there is a balance to be struck
between security and complexity.

Figure 1.14: Different Ciphers are Compared in Terms of RAM.

In Figures 1.15, 1.16 the execution time (encoding / decoding
cycles) should require the lowest values, because it is related to
the process of power consumption (the higher the execution time,
the higher the power consumption). Because the gadgets with
limited resources(IoT devices) are battery-operated, they are low-
powered. As a result, power consumption should be kept to a min-
imum, yet cipher security should be adequate. In other words,
there is a trade-off between security and lightweight. The security
of a cipher is entirely dependent on the keys used to encode and
decode each message block. Therefore, one of the most important
operations in encryption is the process of key generation (it must
be complex) because it is used in all cycles of encryption and de-
cryption. However, its complexity (arithmetic) does not affect the
performance of devices when encrypting or decrypting the block
data. We note that the HIGHT, RoadRunneR and LBlock are few-
er in the number of execution cycles (less energy consumption).
But HIGHT has a higher execution of master scheduling cycles
than the rest of the blocks (RoadRunneR and LBlock) and this is
due to the complexity of the key generation process in the HIGHT
block.

Figure 1.15: Execution Time (Cycle) for Multiple Ciphers in the
Varying Block of Encryption.

Figure 1.16: Execution Time (Cycle) for Multiple Ciphers in the
Varying Block of Decryption.

The power use of the algorithm is measured by the following equ-
ation [55] (1.1):

E=I * VCC* Ʈ*N (1.1)
Here, VCC is the supply voltage of the system. I is the average
current in amperes in which T is consumed in seconds.
Ʈ is the clock period. N is the number of the clock cycle. So, the
clock period is Ʈ=1/f Sec/Cycle. Atmel Atmega128 (AVR) typi-
cally takes voltage in the range of 2.7~5.5, current 20 mA on av-
erage, and also runs at 16 MHz. Figure 2.17 displays the compari-
son of power usage among current ciphers with the suggested
cipher

Figure 1.17: Power Consumption of Ciphers.
1.8 Trends of Design for LWC Algorithm

Smart and light technologies are modern trends for the world that
use devices such as RFID, sensor and embedded systems. As a
consequence, researchers have been developing and proposing a
range of cryptographic algorithms to suit these devices.The NIST
provides an LWC project that describes the issues and develops a
technique for the standardization of lightweight cryptographic
algorithms.In this project, numerous metrics were identified to
evaluate the lightweight properties, in hardware implementation
chip size (area or resource) and/or energy consumption (perfor-
mance), and in software implementation code size, RAM si-
zeand/or execution time (This is our field of study).To provide
knowledge for selecting or determining cipher of LWC in design
directions, the following are required:

25 Abhath Journal of Basic and Applied Sciences

 Block size and key length: Large block and key size cannot
achieve space reduction. Memory is affected by large block size
and large key size; therefore, it must block the size and key size
which must be small to save memory. For instance,the block size
in lightweight block ciphers should be (64 bits or 80 bits) not as
the block size that is used in a conventional AES (128 bits). Key
sizes in lightweight block ciphers should be (less than 96 bits).
The key size acceptable by NIST is less than 112-bit and is equal
to or more than 64-bits [56], as PRESENT of 80-bit. On the other
hand, various issues of security, if we use a block size less than 32
bits, the birthday attacks will be possible. Blocks of 64-bit and
keys size of 80-bit are popular parameters for ciphers of
lightweight.

 Key schedule:Uses simple key schedules in most of the
lightweight block ciphers to save power consumption, latency and
memory. As a result, some attacks can be possible to get keys
during generating sub-keys such as weak keys and related keys but
can prevent these attackers by using key derivation function
(KDF) of security, described in [57], [58] and [59]. When the se-
curity level is not more important than the implementation cost,
for applications, the good selection is a simple key schedule and
Feistel structure, SPNs, and a simple key schedule when moderate
security is the best choice.
 Simpler rounds: To save area, the S-boxes operations in
lightweight blocks use 4-bit S-boxes while conventional blocks
use 8-bit S-boxes.
 Minimal implementations: Uses of resources: encryption and
decryption are not required for all applications. Some applications
need either encryption or decryption operations. The block cipher
functions use fewer resources.
 A combination of Feistel, SP and more architectural
methods increases the complexity of the encryption.
 Thealgorithms(designed) flexibility is decently efficient on a
wide range of 8-bit Micro-controllers.

1.9 Conclusion
The current review in terms of IoT security.First, knowledge of
the Internet of things and its applications and knowledge of the
security required for this study is presented. Second, the general
standards required for lightweight algorithms (which work on
Internet of Things devices) are discussed. Then, a general study of
algorithms in the field of the Internet of Things is provided. And
finally, the recommendations that must be followed to design
lightweight algorithms that work on Internet of Things devices
and apply them in this paper are highlighted.

Data Availability
No data were used to support this study.
Conflicts of Interest
The authors declare that they have no conficts of interest.
Acknowledgments
This work was conducted during our work at Hodeidah Universi-
ty.

How to Cite : Al-ahdal A. H.A, Ali M.M.H., Alahdal A., Qaed
A.S.M. & Al-Rummana G.A. (2022). Securing the Internet of
Things: A review of Lightweight and low-power Cryptography
Techniques, Abhath Journal of Basic and Applied Sciences, 1(2),
18-26.

References
1. McKay N. M. Larry Bassham KA, , and Turan M. S.

(2017). “NISTIR 8114 Report on Lightweight Cryptogra-
phy,”

2. Nandhini P., Vanitha V., and Scholar P. (2017). A Study
of Lightweight Cryptographic Algorithms for IoT, Int. J.
Innov. Adv. Comput. Sci. IJIACS ISSN, 6(1), 2347–8616.

3. A. M. I. Alkuhlani and S. B. Thora. (2018). “Lightweight
Anonymity-Preserving Authentication and Key Agreement
Protocol for the Internet of Things Environment”,108–125.

4. K. T. Nguyen, M. Laurent, and N. (2015). Oualha, “Sur-
vey on secure communication protocols for the Internet of
Things,” Ad Hoc Networks, 32, 17–31.
doi: 10.1016/j.adhoc.2015.01.006.

5. Kahn, D. The Code breakers (1996). 1181, ISBN 0-684-
83130-9. Look for the 1967 rather than the 1996 edition.

6. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. (2005).
“AES implementation on a grain of sand,” IEE Proc. - Inf.
Secur., 152(1), 13. doi: 10.1049/ip-ifs:20055006.

7. N. F. Standard.(1999). Data Encryption Standard (DES).
Federal Information Processing Standards Publication.

8. N. F. Standard. (2001). Announcing the advanced encryp-
tion standard (AES). Federal Information Processing Stan-
dards Publication, 197, 1-51.

9. G. Kortuem, F. Kawsar, V. Sundramoorthy, and D.
(2009). Fitton, “Smart objects as building blocks for the in-
ternet of things,” IEEE Internet Comput., 14(1), 44–51. doi:
10.1109/MIC.143

10. N. Pérez Moldón. (2019).“Security in IoT ecosystems.”.
11. E. Brown, 2018, “21 open source projects for IoT,”

Linux.com. Retrieved, 23.
12. S. Charmonman and P. Mongkhonvanit. (2015). “Internet

of things in e-business,” in Proceeding of the 10th Interna-
tional Conference on e-Business King Mongkut’s University
of Technology Thonburi. 1–9.

13. “The trouble with the internet of things,” Aug (2015).
[Online]. Available: https://data.london.gov.uk/blog/the-
trouble-with-the-internet-of-things/.

14. K. McKay, L. Bassham, M. S. Turan, and N. Mouha,
(2017), “Report on lightweight cryptography (nistir8114),”
National Institute of Standards and Technology (NIST.

15. B. J. Mohd and T. Hayajneh. (2018). “Lightweight Block
Ciphers for IoT: Energy Optimization and Survivability
Techniques,” IEEE Access. 6, 35966–35978. doi:
10.1109/ACCESS.2018.2848586.

16. S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park,
(2017), “Advanced lightweight encryption algorithms for
IoT devices: survey, challenges and solutions,” J. Ambient
Intell. Humaniz. Comput. 1–18. doi: 10.1007/s12652-017-
0494-4.

17. W. Feng, Y. Qin, S. Zhao, and D. Feng. (2018). “AAoT:
Lightweight attestation and authentication of low-resource
things in IoT and CPS,” Comput. Networks, 134, 167–182,
2018, doi: 10.1016/j.comnet.01.039.

18. A. Banafa. (2017). “Three major challenges facing IoT,”
IEEE IoT Newsletter.

19. Retrieved.(2019) https://www.cryptolux.org/index.php/FELICS.
20. Dinu, D. D.(2017). Efficient and secure implementations of

lightweight symmetric cryptographic primitives (Doctoral
dissertation, University of Luxembourg, Luxembourg, Lux-
embourg.

21. Martin Ågren. (2012). Doctoral dissertation On Some
Symmetric Lightweight Cryptographic Designs.

22. W. Stallings. (2019). Cryptography and Network Security:
Principles and Practice. [Online].Available: Retri-
eved .http://uru.ac.in/uruonlinelibrary/Cyber_Security/Crypt
ography_and_Network_Security.pdf

23. G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, and C.
Manifavas.(2018). “A review of lightweight block ciphers,”
J. Cryptogr. Eng., 8(2), 141–184, doi: 10.1007/s13389-017-
0160-y.

24. S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwa-
tari, T. Akishita, and F. Regazzoni.(2015). “Midori: A
block cipher for low energy,” in Inter- national Conference

https://www.cryptolux.org/index.php/FELICS
http://uru.ac.in/uruonlinelibrary/Cyber_Security/Crypt

26 Abhath Journal of Basic and Applied Sciences

on the Theory and Application of Cryptology and Informa-
tion Security. Springer. 411–436.

25. Menezes, Alfred J.; Oorschot, Paul C. van; Vanstone,
Scott A. (2001). Handbook of Applied Cryptography (Fifth
ed.). 251, ISBN 0849385237.

26. M. Luby and C. Rackoff. (1988). “How to Construct Pseu-
dorandom Permutations from Pseudorandom Functions,”
SIAM J. Comput., 17(2). 373–386,doi.org/10.1137/0217022.

27. T. Suzaki and K. Minematsu.(2010). “Improving the gene-
ralized Feistel,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 6147 ,
19–39, doi: 10.1007/978-3-642-13858-4_2.

28. Preneel, B., &Rijmen, V.(1998). Principles and perfor-
mance of cryptographic algorithms. Dr. Dobb's Journal:
Software Tools for the Professional Programmer. 23(12),
126-130.

29. N. Ferguson, (2010), “The Skein Hash Function Family,”
Argument, 30(4),79, [Online]. Available:
http://www.schneier.com/skein.html.

30. A. Bogdanov.(2007). “Cryptanalysis of the KeeLoq block
cipher.,” IACR Cryptol. ePrint Arch., 2007,55.

31. J. Daemen. (1995). “Cipher and Hash Function Design
Strategies Based on Linear and Differential Cryptanalysis,”
Ph. D. Thesis. 267, [Online]. Available:
http://jda.noekeon.org/JDA_Thesis_1995.pdf.

32. P. Barreto and V. Rijmen.(2000). “The khazad legacy-
level block cipher,” Primitive submitted to NESSIE, vol. 97.

33. J. Daemen and V. Rijmen.(2002).“The Design of Rijn-
dael,AES - The Advanced Encryption Standard” New
York,255,[Online].Available:
http://portal.acm.org/citation.cfm?id=560131.

34. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, and
A. Poschmann.(2007). “PRESENT : An Ultra-Lightweight
Block Cipher,”. 450–466.

35. X. Fan, H. Hu, G. Gong, E. M. Smith, and D. Engels.
(2009). “Lightweight implementation of hummingbird cryp-
tographic algorithm on 4-bit microcontrollers,” Int. Conf. In-
ternet Technol. Secur. Trans. ICITST 2009, no. Icc. 5–7,
doi: 10.1109/ICITST.2009.5402515.

36. D. Engels, M. J. O. Saarinen, P. Schweitzer, and E. M.
Smith. (2012). “The hummingbird-2 lightweight authenti-
cated encryption algorithm,” Lect. Notes Comput. Sci. (in-
cluding Subser. Lect. Notes Artif. Intell. Lect. Notes Bioin-
formatics), 7055, 19–31, doi: 10.1007/978-3-642-25286-0_2.

37. L. Knudsen, G. Leander, A. Poschmann, and M. J. B.
Robshaw. (2010). “PRINTcipher: A block cipher for IC-
printing,” Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics). 6225, 16–32,
doi: 10.1007/978-3-642-15031-9_2.

38. Z. Gong, S. Nikova, and Y. W. Law.(2012). “KLEIN: A
new family of lightweight block ciphers,” Lect. Notes Com-
put. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), 7055 , 1–18, doi: 10.1007/978-3-
642-25286-0_1.

39. J. Guo, T. Peyrin, A. Poschmann, and M. Rob-
shaw,.(2011). “The LED block cipher,” Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), 6917, 326–341, doi: 10.1007/978-3-642-
23951-9_22.

40. J. Borghoff et al. (2012). “PRINCE – A Low-Latency
Block Cipher for pervasive computing applications Ex-
tended Abstract,” Int. Conf. Theory Appl. Cryptol. Inf. Se-
cur., no. 11061130539. 208–225.

41. D. Hong et al. (2006).“HIGHT : A new block cipher suita-
ble for low-resource device,” . 46–59.

42. G. Leander, C. Paar, A. Poschmann, and K. Schramm,
(2007), “New lightweight des variants,” Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), 4593, 196–210, doi: 10.1007/978-3-540-
74619-5_13.

43. T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T.
Iwata. (2007). “The 128-Bit Blockcipher CLEFIA (Ex-
tended Abstract),” . 181–195, doi: 10.1007/978-3-540-
74619-5_12.

44. C. De Cannière, O. Dunkelman, and M. Knežević. (2009).
“KATAN and KTANTAN - A family of small and efficient
hardware-oriented block ciphers,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bio-
informatics), 5747, 272–288, doi: 10.1007/978-3-642-
04138-9_20.

45. C. De Canni, “Trivium,” . (2008). pp. 244–266,.
46. W. Wu and L. Zhang. (2011). “LBlock: A lightweight

block cipher,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 6715 ,
327–344, doi: 10.1007/978-3-642-21554-4_19.

47. T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi,
(2011). “Twine: A lightweight, versatile block cipher,”
ECRYPT Work. pn Light. Cryptogr. LC11. 146–169, 2011,
[Online]. Available:
http://www.nec.co.jp/rd/media/code/research/images/twine_
LC11.pdf.

48. R. Beaulieu and S. Treatman-clark, (2013). “The Simon
and Speck Families of Lightweight Block Ciphers,”.

49. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Aki-
shita, and T. Shirai, (2011). “Piccolo: An ultra-lightweight
blockcipher,” Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 6917,
342–357, doi: 10.1007/978-3-642-23951-9_23.

50. D. Hong, J.-K. Lee, D.-C. Kim, D. Kwon, K. H. Ryu, and
D.-G. Lee,(2014). “LEA: A 128-Bit Block Cipher for Fast
Encryption on Common Processors,”. 3–27.

51. L. Li, B. Liu, and H. Wang, (2016). “QTL: A new ultra-
lightweight block cipher,” Microprocess. Microsyst., vol. 45.
45–55, Aug. 2016, doi: 10.1016/j.micpro.2016.03.011.

52. M. N. Valmik and P. V. K. Kshirsagar, (2014). “Blowfish
Algorithm,” IOSR J. Comput. Eng., vol. 16, no. 2. 80–83,
doi: 10.9790/0661-162108083.

53. G. Bansod, N. Pisharoty, and A. Patil, (2017). “BORON:
an ultra-lightweight and low power encryption design for
pervasive computing,” Front. Inf. Technol. Electron. Eng.,
vol. 18, no. 3. 317–331, doi: 10.1631/FITEE.1500415.

54. J. Patil, G. Bansod, and K. S. Kant, (2017). “LiCi: A new
ultra-lightweight block cipher,” in 2017 International Confe-
rence on Emerging Trends & Innovation in ICT (ICEI), Feb.
2017. 40–45, doi: 10.1109/ETIICT.2017.7977007.

55. M. Alizadeh, M. Salleh, M. Zamani, S. Jafar, and K. Sa-
san,(2015). “Security and Performance Evaluation of
Lightweight Cryptographic Algorithms in RFID,” Recent
Res. Commun. Comput., no. November 2015. 45–50, 2012,
[Online]. Available: http://goo.gl/ej5iEr.

56. Barker, E., and Roginsky, A.(2015). Transitions: Recom-
mendation for Transitioning the Use of Cryptographic Algo-
rithms and Key Lengths, NIST Special Publication (SP)
800-131A Revision 1, National Institute of Standards and
Technology, Gaithersburg, Maryland, November 2015,
https://doi.org/10.6028/NIST.SP.800-131Ar1.

57. Chen, L. (2011). Recommendation for Key Derivation
through Extraction-then-Expansion, NIST Special Publica-
tion (SP) 800-56C, National Institute of Standards and
Technology, Gaithersburg, Maryland, November 2011,
https://doi.org/10.6028/NIST.SP.800-56C.

58. Chen, L. (2009). Recommendation for Key Derivation Us-
ing Pseudorandom Functions (Revised), NIST Special Pub-
lication (SP) 800-108, National Institute of Standards and
Technology,Gaithersburg,Maryland,October 2009,
https://doi.org/10.6028/NIST.SP.800-108.

59. Dang, Q. (2011), Recommendation for Existing Applica-
tion-Specific Key Derivation Functions, NIST Special Pub-
lication (SP) 800-135 Revision 1, National Institute of Stan-
dards and Technology, Gaithersburg, Maryland, December
2011, https://doi.org/10.6028/NIST.SP.800-135r1

http://www.schneier.com/skein.html
http://jda.noekeon.org/JDA_Thesis_1995.pd
http://portal.acm.org
http://www.nec.co.jp/rd/media/code/research/images/twine_
http://goo.gl/ej5iEr

