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Abstract
The objective of this study is to create and evaluate a novel measles model that takes into account the impact of vaccination in Yemen 
and makes use of fractional piecewise Caputo derivatives. The theoretical aspect provides the disease-free equilibrium (DFE) points, 
the basic reproduction number (R0), and the biologically viable region of the proposed model. We also deduce the results for unique-
ness using the Banach fixed point theorem.
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1.   Introduction
Measles is a highly contagious, serious disease caused by a virus. 
Before the introduction of measles vaccine in 1963 and wide-
spread vaccination, major epidemics occurred approximately 
every 2–3 years and measles caused an estimated 2.6 million 
deaths each year [1]. Measles is an acute viral respiratory illness. 
It is characterized by a prodrome of fever (as high as 105°F) and 
malaise, cough, coryza, and conjunctivitis -the three “C”s -, a 
pathognomonic enanthema (Koplik spots) followed by a maculo-
papular rash. The rash usually appears about 14 days after a per-
son is exposed. The rash spreads from the head to the trunk to the 
lower extremities. Patients are considered to be contagious from 4 
days before to 4 days after the rash appears [2]. Measles remains 
an important cause of child morbidity and mortality worldwide 
despite the availability of a safe and efficacious vaccine [3]. The 
current measles virus vaccine was developed empirically by atten-
uation of wild-type  measles virus vaccine  by in vitro passage in 
human and chicken cells and licensed in 1963. Additional passag-
es led to further attenuation and the successful vaccine strains in 
widespread use today [4]. For measles, the basic reproduction 
number (R0 ) is often cited to be 12-18, which means that each 
person with measles would, on average, infect 12-18 other people 
in a totally susceptible population [5]. R0is defined as the average 
number of secondary cases of an infectious disease arising from a 
typical case in a totally susceptible population [6], therefore , the 
R0can be estimated in populations if pre-existing immunity can be 
accounted for in the calculation based on mathematical model .
The SIR model has been modified to adapt for measles with an 
incubation period [7,8]. Bakare [7] explained the characteristics of 
measles in 2012 using the model below

S t    SI 1
N  S ,

Et  SI 1
N    E,

It  E    E,

R   I  R,

#   

(1.1)

The accompanying model for the model (1.1) is 

S t  m1  pN  S 1
N  S,

Et  S 1
N    E,

It  E      E,

R   mpN  I  R,

#   

(2.1)

which has been studied by Tessa [9].

In the past, researchers have modeled real-world issues using local 
operators and classical differential equations [10]. However, it is 
challenging to show how memory and genetic traits impact a wide 
range of processes and events.

Experts were therefore interested to investigate these problems in 
terms of FDEs, which have lately gained attention due to their 
obvious novelty. A number of definitions and techniques have 
been proposed to describe the behavior of some challenging real-
world problems that emerge in a variety of scientific fields as a 
result of FC becoming a rich source of information for experts, see 
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[11-13]. The multi-step behavior that some situations display is 
one of these issues. The concept of the multi-definition derivative 
was introduced by Atangana and Araz [14].
The following piecewise fractional model of vaccination-based 
measles is taken into consideration by combining the two models 
(1.1) and (2.1) in two finite periods.

PCCD0
 St  m1  pN  S I

N  S,
PCCD0

 Et  S I
N    E,

PCCD0
 It  E      I,

PCCD0
 Rt  mpN  I  R,

#   

(3.1)

with initial conditions

S0  S 0 , E0  I0 , I0  V 0 , R0  R0

where  0    1, PCCD 0
 stands for classical derivative 

in  0  t  t1 and represents Caputo fractional derivative in  

t1  t    , and S,E, I, and  R as susceptible, 

exposed, infectious and the immune individuals and  N is 
population. The parameters are defined as table following:

Table 1. Biological description of model parameters and their 
numerical values 
Parameter Description Values

 Differential mortality due to measles 0. 13
1
 Average latent period 1

2.6
1
 Average infectious period 1

3.2

 Contact rate 18

m Birth rate 6. 2

p Proportion of those successively vaccinated at birth 0. 80

 Mortality rate 2. 52

The model (1.3) can be expressed as

PCCD0
St 

d
dt

St  1t,S,E, I,R, 0  t  t1

CDt 1
 St  1 t,S,E, I,R, t1  t  ,

PCCD0
Et 

d
dt

Et  2 t,S,E,I,R, 0  t  t1 ,
CDt 1

 Et  2t,S,E, I,R, t1  t  ,

PCCD0
 It 

d
dt

It  3t,S,E, I,R, 0  t  t1 ,
CDt 1

 It  3 t,S,E, I,R, t1  t  ,

PCCD0
Rt 

d
dt Rt  4t,S,E, I,R, 0  t  t1 ,

CDt 1
 Rt  4t,S,E, I,R, t1  t  ,

#   

where 

1t, S, E, I, R  m1  pN  S I
N  S,

2t, S, E, I, R  S I
N    E,

3t, S, E, I, R  E      E,

 4t,S, E, I,R  mpN  I  R,

2. Preliminary results

We start off this part by providing some notations and the 

fundamental nomenclature. Let  0  t1  t     and 

define the Banach space by  X  C0,  3 , under 
the norm 

 max
t0,

|t|.

Definition 2.1 [14] Let   be differentiable. Then the piecewise 
integration is defined by 

PCI0
t 


0

t 1
d, 0  t  t1 ,

1



t 1

t
t  1d, t1  t  ,

where  
PCI0


denotes for classical integral in  0  t  t1

and represent Riemann–Liouville fractional integral in  

t1  t  .

Definition 2.2 [14] Let    C0, be differentiable. Then 
the piecewise derivative is given as 

PCCD0
t 

 t, 0  t  t1 ,
CDt 1

 t, t1  t  .

where  
PCCD0


denotes for classical derivative in  

0  t  t1 and represent Caputo fractional derivative in  

t1  t  .

Lemma 2.3 [14]. The solution of the piecewise problem 

PCCD0
t  gt, 0    1

is given by
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t 
0  

0

t gd, 0  t  t1 ,

t1  1
 


t 1

t t  1 gd, t1  t  .

3. Main Results

It has been perceived that in many measles models the system 
attains its measles-free state when the vaccine appears in the 
population. We now give the existence condition for the 
nonnegative solution of the model (1.3).

Let  
4    4 : t  0 and let  

t  St, Et, It, RtT
. To prove the non-

negative solution of model (1.3), we shall need the next 
generalized mean value theorem

Theorem 3.1 [9] Let  ht  Ca, and 

CD0
  Ca, for  0    1 . Then for  t  a,

, we have

ht  ha
t  a  1


CD0

hc, c  a, t.

Corollary 3.2 

 Let  
CD0

ht  0, for all  t  a,. Then  h is 

nondecreasing on  a,.

 Let  
CD0

ht  0, for all  t  a,. Then  h is 

nonincreasing on  a,.
Theorem 3.3 A unique solution 

t  St, Et, It, RtT
for  t  0 of the model 

(1.3) exists and will remains in  
4 . Moreover,   is definite 

positive.

Proof: We consider the human population model, given by the 
four systems of equations. Hence, it is sufficient to consider the 
dynamics of the human system in

    
4 : t  0 . The solution

t  St, Et, It, RtT
with  

0  S0, E0, I0, R0T
exists and is unique 

on interval  0,. Then

PCCD0
 St

S0
 mN  0

PCCD0
 Et

E0
 S I

N
 0,

PCCD0
 It

I0
 E  0,

PCCD0
 Rt

R0
 mpN  I  0,

As per Corollary 3.2, we deduced that the solution will be in  
4

for all for  t  0 .
Next, to prove the system's feasible region of (1.3) is bounded we 

have Nt  St  Et  It  Rt, then by applying 
the piecewise Caputo operator along with using model (1.3), we 
get

PCCD0
 N  mN  S  E  I  R  I

PCCD0
 N  m  N  I

PCCD0
 N  m  N.

It follows that

N t  m  N, 0  t  t1 ,
CDt 1

 Nt  m  N, t1  t  .

and

Nt  emt , 0  t  t1 ,

Nt  Em  t , t1  t  .

where,  E is Mittag-Leffler function which has an asymptotic 

behavior, hence, when  t   , we get  

Nt  0, m  .
3.1 Equilibria Points and Basic Reproduction Number
3.1.1. Disease-Free Equilibrium (DFE)

The model (1.3) has a DFE given by  E0  S 0 , 0, 0, R0.
As a result, the next-generation matrix method will be used to 
investigate the local stability. We calculate the next generation 
matrix for the systems of equation (1.3) by enumerating the 
number of ways that
 Fresh infections emerge.
 The variety of ways people can move, but there is only one 

means to spread an infection.

The Jacobian of (1.3) at the equilibrium point

JS  ,E, I, R 

m1  p   I 
N     I 

N  0 mp

m1  p     mp
m1  p   S

N   S

N       mp  

m1  p 0 0 mp  

In absence of infection  E  I  0 , the Jacobian of (1.3) at 

the disease-free equilibrium is  E0  S , 0, 0,R
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JS , 0, 0, R 

m1  p   0 0 mp

m1  p     mp

m1  p  
m1p

 
m1p

      mp  

m1  p 0 0 mp  

Its eigenvalues are 

(1 ) (1 )

(1 ) 0 0
(1 ) ( )

(1 ) ( )
(1 ) 0 0

m p m p

m p mp
m p mp

J I
m p mp

m p mp
 

 
   


      

 


 

  
   

 
      

  

1  ,2  m   and the roots of  

X 2  2      X          m 1p
 .

Theorem 3.1.1. The disease-free equilibrium

E0  S , 0, 0,R is locally stable if  Rp  1 and 

unstable if  Rp  1 where 

Rp 
1  pm

      
 0. 76  1.

Moreover, if  p  0, then basic reproductive number is 

0 3.8 1.
( )( )

mR 
     

  
  

where  Rp is the effective reproduction number in presence of
vaccination.

Proof: As  1 and  2 are negative, it remains to prove that  

3 and  4 , the roots of the quadratic part of that characteristic 

polynomial of  J are both negative. We know that, using Routh-
Hurwitz theorem, it is the case when

3  4  0 and 34  0.

As  3  4  2        0 is true, we are 
done from  

34           m 1p
  0.

Moreover, the model Equation (1.3) admits a unique endemic 

equilibrium point E1  S 1 , E1 , I1 , R1T
if and only if  

R0  1.

Lemma 3.5 (i) The disease-free equilibrium point 

E0  S  , 0,0, RT
is locally and globally 

asymptotically stable if and only if  R0  1 ,

(ii) The unique endemic equilibrium point 

E1  S 1 , E1 , I1 , R1T
is locally stable whenever  

R0  1 .

Remark 3.6 Note that, by the values estimated in Table 1, we 
obtain 

R p 
1  p m 

      


1  0 . 8 0 6 . 2 1 8 2 . 6
2 . 5 2 2 . 6  2 . 5 2 3 . 2  0 . 1 3  2 . 5 2 

 0 . 7 6  1 ,

and 

R 0 
m

      


16. 2182. 6
2. 522. 6  2. 523. 2  0. 13  2. 52

 3. 84  1.

A model or physical problem must be thoroughly examined to 
confirm its existence. Several theories and analytical methods can 
be used to generate this concept. The above-mentioned necessity 
can be studied using the effective instrument of fixed point theory. 
As a result, In this part, we will examine if the proposed piecewise 
derivable problem has a unique solution, by using Banach's fixed 
point theorem. To do this, we write model (1.3) as follows:

PCCD0
t  t,t, 0    1,

0  0 ,
#   

where

t 

St
Et

It
Rt

, 0 

S0
E0

I0
R0

, t1 

St1

Et1

It1

Rt1

,

t,t 

1t,S, E, I, R
2t,S, E, I, R
3t,S, E, I, R
4t,S, E, I, R

.

The system (1.3) can be transformed to the given integral equation 
as a result of Definition 2.1 and Lemma 2.3,

t 
0  

0

t ,d, 0  t  t1 ,

t1  1
 


t 1

t t  1,d, t1  t  .
#   

3.2   Uniquness result

Theorem 3.2.1 Problem (1.3) has a unique solution if   is 

continuous function and there exists  L  0 such that  

|,1  ,2|  L |1  2 |, for  

  , 1 ,2  X , and conditions
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1 : Lt1  1,

2 : L
t 1

1  1
#   

(3.2.1)

are satisfied. As a result, model (1.3) has a unique solution.

Proof: Let  O : X  X be an operator define by (p3). Let  

,  X,
the
O  O  sup

t
Ot  Ot




0

t sup t0,t 1 ,  , d, 0  t  t1 ,
1

  t 1

t
t   1 sup tt 1 , ,  , d, t1  t  .


  L t, 0  t  t1 ,

  L
tt 1

1 , t1  t  .


  L t1 ,

  L
t 1

1

.

By (3.2.1), we obtain

O  O 
1  , on 0, t1

2  on t1 ,
.

Hence the result received.

4. Conclusions

Measles is a highly contagious disease that spreads readily 
through direct contact or from any transmissible media to 
susceptible populations. In this article, we discussed a novel 
measles model that takes into account the impact of vaccination in 
Yemen and makes use of fractional piecewise Caputo derivatives. 
The disease-free equilibrium (DFE) points, the basic reproduction 
number (R0), and the biologically viable region of the proposed 
model have been provided. Moreover, we have also deduced the 
unique solution of the model using the Banach fixed point 
theorem. This model demonstrates that the vaccination program is 
the most effective method to stop the spread of measles. Backward 
bifurcation suggests the potential for inaccurate predictions based 
on a knowledge of basic reproduction numbers, as measles may 
still manifest even when R0 is already less than one. Despite this, 
we concluded in our paper that R0 is greater than one. Although 
the introduction of numerous models since then, there are still 
some crucial issues that need to be taken into account for future 
studies, such as the impact of the IgG antibodies that enable the 
immunity to be passed down from mothers. This immunity only 
lasts for nine months after the baby is delivered, and it is 
temporary. The co-infection of measles with other serious 
diseases, such as pneumonia and diarrhea, is another crucial truth. 
The model will reveal the complexity of transmission, but an 
additional contemporary mathematical analysis is required to 
glean more details.
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