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On Intuitionistic Fuzzy Separation Axioms
S. Saleh'?
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2 Computer Science Department, Cihan University-Erbil, Kurdistan, Iraq
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Abstract. In this paper we slightly alter Atanassov’s definition of
intuitionistic fuzzy sets (which are equivalent to interval valued fuzzy
sets [11] ) and we discuss some interesting new properties of
intuitionistic fuzzy topology. The relation between IFTSs and the
induced fuzzy bitopological spaces are studied. We also give the
definitions of intuitionistic fuzzy regularity and separation axioms and
give some its characterizations. We introduce new concept of good
extension property in intuitionistic setting. Finally, we investigate some
relations between separation axioms on IFTS and that of induced fuzzy
topological spaces (FTSs for short) and vice versa.

Keywords. intuitionistic fuzzy sets, intuitionistic fuzzy point,
intuitionistic fuzzy topology, intuitionistic product, intuitionistic fuzzy
separation axioms, good extension.

1. Introduction and Preliminaries.

After the introduction of concept of fuzzy sets by Zadeh [18], many
authors generalized the idea of fuzzy sets in different directions [1, 12, 16,
17]. Atanassov [1] introduced the concept of intuitionistic fuzzy sets as
generalization of fuzzy sets. Later this concept was generalized to other
aspects [2, 3, 4, 6 ]. Subsequently, Coker [6] introduced the concept of
intuitionistic fuzzy topology and studied some of its properties [7-10].
Nevertheless, separation axioms in IFTSs are not studied. Only Coker
and Bayhan [5] introduced several definitions of T, and T, and
investigated the relation between them.

In this paper we introduce new concepts of intuitionistic fuzzy separation
axioms, intuiti- onistic fuzzy regularity axioms in IFTS based on IFSs
(in our sense). The relationship between our concepts and Coker-Bayhan
concepts of T; and T, takes place in another article, because the
definition of intuitionistic fuzzy point in both concepts is different.
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In section.1 We will give a modification of IFS [1] investigating some
new properties. In section.2 We recall the definition of IFT. We
introduce new concept, the intuitionistic product, we generate many
fuzzy topologies from a given IFTS and vice versa, and we define some
operators on it. In section.3 We introduce the definitions of IF-separation
axioms, IF-regularity axioms, we give some implications on it. The
concept of the good extension property will be given and studied. In
section.4 We investigate some relations between separation axioms of
IFTS and that of induced FTSs, some necessary counterexamples will be
given. Finally, in section.5 Some relations between separation axioms of
fuzzy topology and that of induced intuitionistic fuzzy topological spaces
(IFTSs) will be investigated, with some necessary counterexamples.

Atanassov [1] introduced the concept of intuitionistic fuzzy sets
Definition 1.1 [1] Let X be a nonempty fixed set. An intuitionistic fuzzy
set A (IFS for short) is an object having the form:

A= {{Xu1,(X),7,(X)): xe X }, where the functions g, : X— I and

75+ X— | denote the degree of membership (namely x, (x)) and the
degree of nonmembership (namely y, (x)) of each element x € X to the
set A, respectively, and 0< z, (X)+y,(X) <1V xe X . Where | denotes
unit interval [0,1].The family of all intuitionistic fuzzy sets on X, will be
denoted by I (X).
From the above definition it is clear that an intuitionistic fuzzy sets may
be regarded as a pair (A,A,) € 1" x1* such that A c A5, where A is
the complement of A, .

Accordingly, we can alter the Atanassov’s definition of intuitionistic
fuzzy set slightly to the following more convenient definition:
Definition 1.2

An intuitionistic fuzzy set A (IFS for short) is an ordered pair

A=(A, A)el*x1* suchthat A c A,. Where 1* is the family of all
fuzzy sets on a given nonempty set X. The family of all intuitionistic
fuzzy sets on X in this form, will be denoted by 11 *

ie. N ={(A,A):A,Acl*and A c A} ThelFS X =(X,X) is
called universal IFS and the IFS ¢ = (¢,¢) is called the empty IFS.

Any fuzzy set A on X is obviously an IFS in the form A=(A, A).
Definition1.3 Let A =(A,A), B=(B,,B,) € Il *. Then:
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H)A=B <A =B, i=12,

2)AcB<ACB, i=12,
3)AUB=(AUB, A, UB,),

4)AﬂE:(A§_mBl| AzﬂBg)a
5) A° = (A, A°), where A® is the complement of A.
Remark.1.4 By the canonical mapping from (1(X),U,N,C) onto

(11*,U,N,C) assigns for all A e 1(X) the set (A,AS) e II*, we note

that all results which are based on Atanassov ’s intuitionistic fuzzy sets
still true in our setting.

Definition. 1.5
Let X and Y be two nonempty sets and f: X —Y be a function,
)If A=(A,A)isan IFSin X. Then the image of A under f, denoted

by f(A)isthe IFSinY, defined by, f(A)=(f(A), f(A,)), where

sup A (x) it 7 (y)#¢

— JIxef(y) i Y, i=12.
AGUS) 0 otherwise yer. =4

i) If B=(B,,B,) isan IFSin Y, then the preimage of B under f is the
IFSin X  defined by f ™ (B) =( f *(B,), f *(B,)).
Where f *(B)(X) = B (f(x)) Vxe X, i=12.

Now the intuitionistic fuzzy point introduced by Coker and Demirci in [8]
can be modified into the following definition:

Definition1.6

Let X be a nonempty set and let x e X be a fixed element, a, e | =[0]]

such that a<B, p > 0. An intuitionistic fuzzy set, X, 5 = (X,, X;) € Il "

is called intuitionistic fuzzy point (IFP for short) i.e. the IFP X, , is an
ordered pair of two fuzzy points x,, x, wherex, <x,. The set of all

IFPs in X will be denoted by X, .

An IFP X, 5 is said to be belongsto an IFS A = (A, A,) on X, and is

denoted by X, 5 €A, iff x, €A and x, € A, .The set of all fuzzy
points will be denoted by X
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Definition 1.7 [13 ]

Let A, BeI*. Then A is quasi-coincident with B, iff there exists x e X
such that A(x)+B(x)>1. If A is not quasi-coincident with B, then we
write A/ B, i.e. Ag/ Biff, A(x)+B(x) <1 forallxe X.

Definition 1.8

LetA, Be Il *. Then A and B are said to be quasi-coincident and it is

denoted by AqB, iff A qB, or A,qB,.If A is not quasi-coincident
with B, then we denote thisby Aq/B i.e. A B < A ¢ B, and

A, ¢ B;.
Theorem 1.9
LetA, B,Cell*, D,Fell’, f:X =Y be afunction and

{A:ied}c 1™, where A, =(A; A;) and X 5y, Y, € Xp. Then:

) A@B< ACBS,
2) ANB=¢=A¢/B,

3) Xap) @ A= X p €A,
4 Ag A,

6) AcBo(Xupnd A= X5 0q B forall X, z inX),
7) AQB < X qB, forsome Xy, 5 €A,
8) X.p)d (UA)<=3Tied suchthat X, 4 qA,

iel

9) If X(o.py d(NA;) then X, 5yq A forallied,
ied

10) x=y implies X, » @'Yy, Y. By, Ael.
11) X(aﬁ)‘I/ Yo SXFYOrX=y and a+ A <1IAp+y <1,

2. Intuitionistic Fuzzy Topological spaces.

Definition 2.1 [6]
An intuitionistic fuzzy topology (IFT, for short) on a nonempty set X, is a
family » of intuitionistic fuzzy sets ( IFSs for short) in X that satisfies

the following axioms :
Ti) ¢ . Xen,
T,) if ABen ,thenANBer,
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Ts) if{A:ied}cn thenUA en.

ied
The pair (X, 7) is called intuitionistic fuzzy topological space (IFTS for
short). Every element of 7 is called intuitionistic fuzzy open set (IFOS
for short) in X. The complement A° of an IFOS A inan IFTS (X,7) is
called an intuitionistic fuzzy closed set (IFCS, for short) in X. The set of

all IFCSs is denoted by 1°.

Definition 2.2
If (X,n)isan IFTS. An IFSN of X is called an intuitionistic fuzzy

neighborhood (IFN for short) of an IFP x, ,, Iin IFTS (X, ) iff there
exists IFS O, e n suchthat,x, ,, < O, < N.Itisclearthat O,
(a.p) ' (a.p) — (a.p)
is an IFO- neighborhood (IFON for short) of X, , . The family of all IF-
neighborhoods of the IFP X, ,, will be denoted by N(x, 4 ).

Definition 2.3 [6]
Let (X,7)bean IFTSand A =(A,A,)bean IFS in X. Then the fuzzy

interior and fuzzy closure of A will be denoted by A", E respectively,
and are defined by:

A =U{G:GisanIFOS in X and G c A},

A=N{K:KisanIFCS in Xand Ac K},

Proposition 2.4 [6]

Forany IFS A in (X,7) we have: i) AS = (A")° and i) (A)" =(Af .

Theorem 2.5. Let (X, n) be an IFTS, A, B € Il *. Then:
1) XupeA < 30,  €N(Xy,y)suchthat O, ~ < A,

X(a.8) ) T

2) X(a,ﬁ)q A = Ox(ayﬁ) q A v Ox(ayﬁ) EN(X(a,ﬁ))’

3) VJgA < VgA V Verp.
Proof. Obvious.

Theorem 2.6. Every IFTS(X, 7 ) generates a fuzzy bitopological
space (X,I1,,IT,), where II,={A :Aen}and II,={A,: Aen}

Theorem 2.7
Let (X,77) be an IFTS on X. Then the following collections are fuzzy

topologies on X,
DI, ={A (A, X )en}tU{¢}
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I, ={A,:(4,A)en}U{X}

iii) [, ={ A: (A, A) e }. Moreover, I1, <T1,, I1, <I1, and
I, I, NI, .

Proof: Straightforward.

Now we shall introduce a new concept which is the intuitionistic product
of two families of fuzzy sets as follows:

Definition2.8
Let 1, n2 < 1. The intuitionistic product of ny 7 is denoted by n1%m2

and it is defined by nixM2={(A, A):A en, A en, and A CA}.
Definition. 2.9

An IFTS (X,n) is called, IBTF-topological space iff, =TT, X I, .
Theorem 2.10

Let (X, 7,,7,) be a fuzzy bitopological space. Then (X, 7, xz,) is an
IBTF-topological space for which IT,=7,, IT,=7,,

wherez, %7, ={ (A, A):Aezr,Aecr,and AcCA }.
Proof: Straightforward.

Example 2.11

Let (X, 7 ) be a fuzzy topological space, A= (A, A,) € Il *. Then the
following families are IBTF-topologies on X generated by 7 :
Dp=rs1* ={ (AA)AcT |

), =1"%r={(AA): Aer ]

3)my=rxi(X)={ (A, X): A ez jU{ ¢ } where i(X)=(X {0,1}) is
the indiscrete fuzzy topology on X.

4) n,=i(X)%r={ (. A): A er JU{ X |

5) i=txr={ (A,A) A AET |

Definition 2.12

Let (X, 7) be a fuzzy topological space. Then the IFTS (X, zx7) is called

ITF-topological space induced by 7 .
Theorem 2.13

Let (X, 7 ) be a fuzzy topological space and let, i_: 11" — 11" bean

T

operator defined by i_(A)=(A",A,°) VYAell™ .Theni_isan

intuitionistic fuzzy interior operator that generates the ITF-topology zx .
Proof. It is clear.
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Corollary 2.14 Let (X, 7 ) be a fuzzy topological space, and let Ae11* .
Thenthe map C_: 11X — 11 defined by C_(A) = (A, A,) isan

intuitionistic fuzzy closure operator that generates the ITF-topology zx 7 .
Theorem?2.15

Let (X, z,,7, ) be a fuzzy bitopological space, Ae Il * . Then the map

—y ——1
C:I1* = 11* defined by, C(A) = (A", A2UA, )is an intuitionistic
fuzzy closure operator which generates the IBTF-topology 7, <z, on X,

where A is the 7,-closure of fuzzy set A, i=12.

Proof. Obvious.
Corollary 2.16

Let (X, 7,,7, ) be a fuzzy bitopological space. Then the map i: 11 * — 11",
givenby i(A)=( (ANA?)"A?) ) YAell*, isan intuitionistic
fuzzy interior operator which generates the IBTF-topology z, Xz, on X,
where A’'is the 7, -interior of A, i=12.
Definition 2.17 [15]
Let (X,77), (Y,n") be IFTSs. Thenamap f : X— Y is said to be
1) An IF-continuous if f*(B) isan IFOS of X for all IFOSB of Y,

[or equivalently, f*(B) isan IFCS of X for each IFCS B of Y],
2) An IF-open function if f(A) isan IFOS of Y for each IFOS A of X,
3) An IF-closed function if f(A) isan IFCS of Y for each IFCS A of X,
4) An IF- homeomorphism if f is bijective and f , f ™ are IF-continuous.
Definition 2.18 [15]

Let f:(X,n)— (Y,n") be amap. Then the following statements are

equivalent:
i) f is an IF-continuous map.

)Y X5 € Xp ,VIFN Oy, of f(x,,)thereisan IFN O, = of
X SUchthat (O, )cO
Theorem 2.19 [15]

Let f:(X,n)— (Y,n") be abijection. Then the following statements are

equivalent:
i) f isan IF-homeomorphism .

i) f isan IF- continuous and IF-closed .
i) f *(B)=f*(B) V IFS B ofY.

f (X))
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Theorem 2.20
Let f:(X,n)— (Y,n") be an IF-continuous function. Then the function:

f:(X,I1,) > (Y,IT}), i=12 are fuzzy continuous functions,
whereIl,, IT, are fuzzy topologies defined as in theorem(2.6).
Proof.
Let f :(X,7) — (Y,n") be an IF-continuous function and let B; e IT,".
Then there exists B,e I1,” such that (B,,B,) € " and hence,

f*(B,,B,) = (f *(B), f (B,)) € n, consequently, f*(B,) eTl,, which
implies that f : (X,I1,) — (Y,IT;) is a fuzzy continuous.

The following example shows that the converse of the above theorem
may not be true in general.

Example 2.21 Let ( X,7) be any fuzzy topological space. Then
id: (X,7)—>(X,7r) is afuzzy continuous . But id : (X,7,) = (X,7X7),
is not IF-continuous. Where 7, ={ (A /A):Aez }.

Theorem 2.22 Let (X,7) be an IBTF-topological space and (Y,7") be
any IFTS. Then f :(X,n)— (Y,n") isan IF-continuous function

iff f - (X,I1,) = (Y,I1,"), i=12are fuzzy continuous functions.

Proof. it is clear.

3. Separation axioms in intuitionistic fuzzy topological spaces.

Definition 3.1

An intuitionistic fuzzy topological space (X,7) is said to be:

1) IF-T, iff X, 5 &Y, iMplies X, 5 & Vi, OF Yo & Xp -

2) IF-Tyiff X, 5 @'Y, implies X, 5 @ Vi, and Yo @ X, 4 -

3) IF-TLiff x4 a4y, implies there exists O, , ,, O,
suchthat O, 4, @Oy, -

Now we list some characterizations of IF-separation axioms.
Theorem 3.2
Let (X, 7) be an IFTS. Then (X,77) is IF-To iff [ X, 4 ¢/, there exists

O, SUchthat y. , ¢/ O, , orthereexists O, , such that

Xan ¥ Oy ¥ Xapyr Yo €Xipl.
Proof. Follows from (2) of theorem (2.5) and (5) of theorem (1.9).
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Theorem 3.3 Let (X, ) be an IFTS. Then the following statements are
equivalent:

1) (X, ) elF-Ty

i) Xg,5d Y., implies that there exists O,, , suchthat vy, . ¢/
Osap y suchthat X, ¢ Oy, ),

) Xup = Xap Y Xap €Xip.

Proof. i) = ii) is obvious.
I) =iii) Let x,, ,,q Y, - Then by (ii) there exists O, ,, such that

, and there exists O, ,

Xw.p @ Oy, thisimplies O, ., = X, , , thus ¢, 5 is open for every
X.p) €EXip 1.8, X, 4 Isclosed for every X, , € Xp hencex, » = X, -
i) =i) Let X, 4y = X5 V Xy €Xipand X, 5 Y2 - TheNX,, 4,
Y(,..y are closed IFPs. Since y, ,, & Y. =0y, 5 and X, 5 &

X (@p) =0y, 1 ten X, @ Y,y @A Y, 1 @ X gy -
Hence (X,7) is IF- Ty.

Theorem 3.4 If (X,7) is IF-T2 then X, 5= (\Oxupy VX € Xp-

Ox(a.p)eN (x(a )

Proof. Let (X,7) be an IF-T, and x, , € Xjpp. Then forany y, ., a/ X, 4
there exists O, ;; eN(Y(, 1), Oyu.p) € N(X, 4)) such thatO, ., ;) ¢/

Ovaty = Yoy ¥ Oxapy = Yo ¥ ﬂOX(aﬁ)

Ox(a.p)eN (X(a )

=Xup2  [)Ouap (0Y(6)of theorem (1.9)). On other hand it is

Ox(a, 1N (x(a )

clearly thatX, » = [)Oyuyp »aNd0 X4y = [\Oxup -

o o}

x(ar. )N (X(a,p)) x(a.)eN (X(a,8))

Definition 3.5 An IF-topological space (X, 7) is said to be:

1) IF-R, iff X, 5@ ¥, implies Y, & X,

2) IF-Ry iff X, ¢ ¥, implies there existsO,, 5, O, such that,
Oxam @ Oy -

3) IF-Ryiff x, ,¢F , F en® implies there existsO,, 5, O such
that O,, , ¢/ O .

4) IF-Rs iff F,¢/F, ,F,, F,en® implies there existsOg , O, such
that Of, @ O,
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5) IF-Tsiffitis IF-R, and IF-Tj.
6) IF-T,4 iffitis IF-Rz and IF-T;.

Now we introduce the following reformulation of IF-
R, axioms, (i=0,1, 2,3) and give some implications on it.

Theorem 3.6
Let (X,7) be an IFTS, X, €Xpp. Then the following statements are

equivalent:

1) (X,p)isanIF-R_ .

2)%wp) S Oxapy ¥ Oty € N(Xiopy) -

3)Xwp) €M Oxtuy  Oxtapy EN(X(u) )} -

4) Xoup@F ., F en® implies there exists O suchthat x, 4 ¢/ O¢ .

5) Xun?F . E en® implies X, , ¢/F .

6) Xupy @ Vip.0y iMplies X, 5 ¢/ ¥, 1) -

®
Proof. 1)=2) Let Yy, ,,0%X. = Xwund Y, By (2) of theorem

(2.5), we have Yo 90w ¥ Orupy = Xiwp) S Oxiwy ¥ Oxepy (by

(6) of theorem 1.9).

2) =3) is obvious.
(2)
3) = 4) Let x,, « F , F en® = Xx,, €F° =

_ cC _C _ c _
Xap €F = F < X%pn=0¢, and hence X, 5, ¢ X (@p) = Of .

@
4) =5) Let x, ,¢F , F en® = thereexists O, such that

— C o C -
Xap) ¥Or = X(ap) X0 = X(upy) € O " = KXoy € O = X ) ¥0p =

Xapy ¥ E -
5) =6) and 6) = 1) are obvious.

Theorem 3.7 The following implications hold:
IF-R3 A IF-Ry= IF-R;= IF-R; = IF-Ry.
Proof. It is clear.

Theorem 3.8 The following implications hold:
1) IF-Ty =IF-T3 =IF-T; =IF-T; =IF-T,.
2) IF-Ry AlIF-To = (X, n7) is IF-T3

Proof. It is clear
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Theorem 3.9 Let (X,77) be an IFTS. Then (X,7) is IF-Ry iff X, 4 ¢/
Yi,..y implies there exist Oy, ») and Oy, ;, suchthat O;, ;¢ Oy, ;-

Proof. Follows from the last implication of theorem (3.7) and from (2) of
theorem(3.6).

Theorem 3.10
Let (X,77) be an IFTS. Then (X, 7 )is IF-Rz iffV x, , €Xip,
V O, eN(X,j)thereexists O; suchthat O, <O, .
(a.8) ! (a.f) (a.f8) (a.8)
Proof. Let (X,77) be an IF-Rz, X, 4 € Xpp, OXW) eN(X.,.z). Then
x(a'ﬁ)q/ofw implies that 30; € N(X, ), V € N(Ofw ) such that

* * C ~ * C
Oy ¥V =0, V" =0, cV"cO,,y-

Xa.p)
Conversely, let x, , €Xp, F en® be such that Xupnd F.

Thenx, , < F° so, E® eN(x,,) =3 0;  such that

O, <O,,z=F° (byhypothesis), hence F ¢ C_)X*(:ﬁ) =0, and

X(a.p)

Or ¢ 0;  =(X,n)elF-Re.

Theorem 3.11
Let (X,77) be an IFTS. Then (X,7)elF-R3iff ¥V F en®, Vv Or eN(F)

there exists O." eN(F ) such that O." < O,.
Proof. It is similar to that of the above theorem.

Theorem3.12
Let (X,7) be an IFTS. Then the following implications hold:
IF-Ty = IF-T3 = IF-T; = IF-T; = IF-T)
U U U U U
IF-R3 A IF-Ro=IF-R; = IF-R; = IF-Ry = any IF-space.
Proof. Straightforward.
Definition 3.13
An intuitionistic fuzzy topological property (IFTP for short) for an IFTS
(X, ), will be called good extension property if, (X, 7 ) has the fuzzy
topological property (FTP for short) iff (X, 7%z ) has the fuzzy
topological property IFTP.

Now we shall show that all intuitionistic fuzzy regularity axioms
(IF -R, ,1=0,12,3) are good extensions properties.
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Theorem3.14 The IF- regularity axioms(IF-R;,i = 0,1,2,3) are good
extension properties.

Proof. As a sample we prove the cases (i = 2) the remaining cases are
similar.

For i=2. Let (X,7)be a FR-space, X, ,q F, E= (FLF2)e r°%z°.
Thenx, ¢/ F2 and x, ¢/ F; where Fy, Fe 7€ =30, ,0, O, and O
st O, ¢/ O, and O, ¢/ O .Take O,, =0, NO, and Of =0 NO;, .
Then O, = (O, ,0,,) and, O = (Og",0¢, ) such that O,,, 0=
(X,zx7)is IF-Ry.

Conversely, let (X, 7%7) be an IF-R,space, X, ¢F, Fe . Then
(X, %) (F,F)ieX,,q¢ F=(F,F)ec® % =

30,4 = (Oxa .0, ),0:=(0¢,0;) such that O, ,,¢/ O =

30, ,Osuchthat O, ¢/ O , hence (X,7)is FR..

Now we shall show that the separation axioms(IF —T,,i=1,2,3,4) are

good extensions.

Theorem 3.15

The IF- separation axioms (IF-T;,i=12,34) are good extension
Properties.

Proof. As a sample we prove the cases (i =1,3) the remaining cases are
similar.

i) For i =1. Let (X,7) be a FT;-space and let x, , be an IFP of
(Xyzx7). Then X, 5= (X,,X;) = (X, X3) =X, 5, (SiNCE (X, 7 )eFTy1).
Thus (X,zx7)is IF-T;.

Conversely, Let (X,z%7) be an IF-T; space, x, be a fuzzy point of
(X,7). Then Xr.a) =(X,,X,) = X(a0) =(x,,Xx,) i.e. X,=x,.Hence (X,7)
is FT;-space.

if) For i =3. The proof follows from ii) of the above theorem and from
i).

1)'heorem 3.16

Let (X, 7 ) be a fuzzy topological space. Then(X,zxz ) is IF-To = (X,7)
is FTo-space.

Proof. Let (X,7%7) be an IF-To space, x,q Y,. Then
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(Xa ’ Xa )q/( y/j’ ’ yﬂ) Ie X(a,a)q/ y(ﬂ,ﬁ) = X(a,a)q/ y(ﬂ,ﬁ) or y(ﬁ,ﬂ) q/ )T(a,a)
(since(X,zx7)e IF-To) =X, ¢ ¥V, Or Y, ¢ X, ,and so (X,7) is IF-To .

The following example shows that the converse of the above theorem
may not be true.

Example 3.17 Let X ={a }, and 7 = {a, :t <1/2}U{X }be a fuzzy
topology on X . Then ( X ,7 ) is FT,-space. But the intuitionistic fuzzy
topological spaces (X7 % 7), where

rir={a, X):t<Y2}U{(a, a,):t<r<12}U{X} is not IF-Ty.

Definition 3.18 A property p is called an intuitionistic fuzzy topological
property or intuitionistic fuzzy topological invariant if an intuitionistic
fuzzy topological space (X, 7) has p then every space homeomorphic to

space (X, ) has also p.
Theorem 3.19
The regularity axioms(IF-R; , i = 0,1,2,3 )are intuitionistic fuzzy
topological properties.
Proof: As a sample we prove the cases i =2.
Fori=2.Let(X, n)bean IF —R, and let f :(X, 7)—(Y,n")bean

IF-homeomorphism. Let X, , are IFPin Y and F e n*" such that

Xap @ F, then £7(x, ) f7(F), f7(F)en°.Since (X, 7)
is IF —R,. Then there exists O__, andO_, _. Such that
(X(a.p)) f=(F)
C

C *
P %) ¢ Of'l(E) .Nowput, O, = (f (O f’l(xm,m)) ) en .,
0, =(f(0f14,) ) en” . Then there exists O, , and O, en" such

that O, ,,¢' Oy . Hence (Y, 7n")isIF —R,.

Theorem 3.20
The separation axioms IF-T. , i =0,1,2,3,4 are intuitionistic fuzzy

topological properties.

Proof. Asa sample we prove the cases i =1.

For i=1.Let(X,7)bean IF-T, and let f :(X, 7)—>(Y, n")bean IF-
homeomorphism . Let X, 5, ¥, are IFPsin Y suchthat x, , ¢ Y, -

Then f7(x, ;)& f7(y,.)- Since (X, 7)is IF —T,. Then
F 2 ) ¥ T o) and 750y, 00 & T (X ) =
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f_l(x(a,ﬁ))q/ f_l(y(m)) and f_l(y(m))q/ f_l()_((a,ﬁ)) (by theorem
(2.20)) = f fﬁl(X(a’ﬁ))q/f f*l(yw))and f fﬁl(y(m))q/ f f’l(i(a'ﬂ))

= Xapn @ Yo and Yo q X5 = (Y, n)isIF -T,.

Theorem 3.21
The axioms IF-R; and IF-T, , i =1,4 are invariant under IF- continuous

and IF-closed onto map.

Proof. i) Let (X, n) bean IF =R, and let f :(X, 7)—>(Y, n")bean IF-
continuous, IF-closed and onto map. Let M, G e 77*0 suchthat M ¢ G .
Then f[M J¢/ f'[G]land f[M ] f'[Glen®.

Since (X, n7) is anlF —R;, then there existsO , O € i such that

e ) IR A ()

Oy @ Oy gy Let U = (1102, 1F andv = (1[0°,  1F . Then

f[M]

M cUen",GcVen andU gV, Then (Y,7")is IF —R,.

i) For i=1. Let(X, n)bean IF-T,, f:(X,n)—>(Y,n")bean IF-
continuous IF-closed and onto map. Let X, 4, Y, are IFPsinY such
that X, 4 & Y(,..)-Then 7 (x, ») & £7(y,,) - Since (X, 77) isIF =T,
then there exists O and O e i such that O q

7 () 7y, 0)

f —1(yw)) and f ‘1(x(aﬁ)) 4 Of,l(yw)) . Now take

7 (X))

U =(f(0F+, ) and V = (f(OF+ )) then there exists

71(y(7‘

=U ep" and O, , =Ve n” (since f is IF —closed ) such that
. )cO )andf*l(O = f*0, )¢

(@ap? — fﬁl(x(a‘ﬂ) Y(7.4)

F(Yg)and f7 (X, ) ¢ f_l(ovw,z)) = f_l(ox(a,m) c 7w
and f (0, ) = f(x;,) = F 170, ) ffy,)and

X(a.8)

-1
10 )0,

7.2) X(a.p)

Y(r,2)

-1 -17,,C
ff (wa)) c F 17 (Xep) =0, ,
= OXW) 9 Y.y and X, g q/OyW) (by (1),(5) of theorem (1.9)).

Hence from (ii) of theorem (3.3) we obtain (Y, ") is IF —T,.
iii) For i=4. The proof follows from i) and ii).

C C
< Yo and Oy < X 4

50



Abhath Journal of Basic and Applied Sciences Vol. 1, No. 1, June 2022

4. The Relations between fuzzy separation axioms of IFTSs and that
of induced fuzzy topological spaces:

Theorem 4.1 If the IFTS (X, 77) is IF-To , then (X, T1,), (X, I1,) are FTp.
Proof. Let (X, ) bean IF-To, X, ¢ y,. Then (X,,X,) & (Y4, Y,)

1.8 Xy Y(p.5 = 3 IFOS Oy 0y = (A, A) €N(X,, ) SUCh

that Y ; 5 & Oyuey = (AL A) = ¥V, ¢ O, = A eIl orthere exists an
IFOSO, ;5 =(B,,B,) e N(Y(44) suchthat x, ,,q O, , =(B,,B,)
= X,q' B, =0, ell; =(X,I1,) is FTo. The rest is similar.

The converse of the above theorem may not be true in general this can be
shown by an example (3.18), where 7 =11, =T11,.

Theorem 4.2 If the IFTS (X, 77) is IF-T1, then (X, T1,) , (X,I1,) are FTy.

Proof. Let (X, 7) bean IF-Ty, X, ¢/ Y, = (X, X,) & (Y, Y,) ie.
Xy ¥ Yippy = thereexists an IFOS O, ,, = (A, A;) e N(x, ) such
that v, 59 (AL A) = Y, ¢ A =0, eIl and there exists an IFOS
Oy5. =(B,,B,) € N(y4.4) such that Xy ¥ Oys.5) =(B,,B,) = X, ¢
B, :Oyﬂ eI1, and hence (X, T1,) is FT1-space.The rest is similar.

The following example shows that the converse of the above theorem
may not be true.

Example 4.3 LetX ={a}, and n={(a,a):t<r<y2U{(a, a):t=r>42

be an IFT on X. Then (X,7) is not IF-T;-topological space. But the
induced fuzzy topological spaces (X,I1,), 1 =12, where

I, =11, ={a, :te 1 =[0,1] } are FT;-spaces.

Theorem 4.4

For any pair of fuzzy topological spaces (X, 7;), i=12. Then

(X, 7, x7,)is IF-T, iff, (X, 7;), i =1,2 are FT;-topological spaces.

Proof. It is clear.
Theorem4.5 If the IFTS (X,77) is IF-T,, then (X,I1,) is FT».

Proof. Let (X, 7) be an IF-T2, x, ¢/ Y;. Then X, & Y55 = 3 IFOS
Oywey =(A,A,) and IFOS O, =(B,,B,) such that O, ¢

Oypp = A « B, , since BcB = A ¢
B,=>30, =A eHl,Oyﬁ =B, eI, such that O, q/Oyﬁ = (X,I1,) eFT,.
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The following example shows that the converse of above theorem may
not be true.

Example 4.6

LetX ={a}, r ={a :t <1/2}U{X} be a fuzzy topological space. Then:
(X,1%) is FT,. But the intuitionistic fuzzy topological space(X,7),
where 7= 1" %z ={(a,,a):r <t <y2}U{(a,, X):r el } on X is not IF-
T2, since for ag, .7 4 Aas0e then,

=380,,,.., and 7 O.os00 such that O.pior @ O
The following example shows that the IFTS(X, 7 ) is IF-T, , for which
(X,I1,) isnot FT,.

Example 4.7

Let X be an infinite set, and 7, = {A e 1*:S(A%)is finite}U {p} bea
fuzzy topology on X, where S(A®) is the support of A°. Then the
IFTS(X, 1* %z )isan IF-Ts. But the fuzzy topological space (X, z, ) is
not FT, since first 1* Xz is IF —T, because,

Xy = (X0, X7 UXg) = X, 5 VX, 5 and 1% %z, is IF —R, because,
for X, 5 ¢ E=(F,F) ez X1 = x,¢Fand x;, ¢Fie S,
=Fcx =0 ez, andx, cR° =0, ez,.—(1). Now

(X, 1")isFR,, x, ¢ F, =30, =x,el™and O =x; ez, from(l) withO, ¢/
O, . Now put 0, =(0,,0,)=(x,F)el" %z, ,0.=(0;,0;) = (R x;) e 1" %7,
suchthat O, ¢/ O¢.

a(03,06)

5. The Relation between separation axioms of fuzzy topological
spaces and that of induced intuitionistic fuzzy topological spaces.

Lemma 5.1

Let (X,7) be a fuzzy topological space and (X,z%1*) be the first IBTF-
topological space induced byz (see example 2.12). Then for any IFS

A=(A,A,) we have:
) A=(A A2),
i) A"=(A",A,), where the closure of A,and interior of Aw .r.tor

Proof. Follows from theorems (2.16), (2.17).
Theorem 5.2 Let (X, 7 ) be a fuzzy topological space. Then:

X, 7%1%)is IF =R = (X,7)is FR ,i=0,12,3.
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Proof. As a sample we prove the cases i =3 the remaining cases are
similar. For i =3. Let (X,zX1*)eIF -R,, G¢ F where G, F e z°©

=G=(G,G)¢ (F,F)=F, G, Fel*%xz%. (X, %1% ) being IF-
Rs, thus 30, = (A, A,), O =(B,,B,) ez %17 suchthat O, ¢/ O =
Ay B,=>AqgB ie 30, =A €7, O =B, e suchthat O; ¢/ O
Hence (X,7) is FR,.

The next example shows that the converse of the above theorems is not
true.
Example 5.3 Let X ={X,y,z }and let,

= { X,¢, (XO.S’ yO’ ZO)! (XO.S’ y0.5’ ZO)!(XO.S' yO’ Z0.5) ’ (XO.S’ y0.5’ ZO.S) }be a

fuzzy topology on X, and
={ X,0h (X0 Y1, 21), (Xos1 Yos 22)s (Ko Y Z0s)s (Xoss Yos: Zos) }-

Then (X ,7) isFR,. But the intuitionistic fuzzy topological space
(X ,7%1%) isnot IF-Ry.
Theorem 5.4
Let (X, 7 ) be a fuzzy topological space. Then ( X,
tx1%)is IF -T, = (X, 7) is FT,. Proof. Follows from theorem (4.1).

The following example shows that the converse of the above theorem
may not be true.

Example 5.5

LetX ={a}andlet 7 ={ a:t>1/2 }U{ ¢ }be afuzzy topology on X.

Then (X, 7 ) is FT,. But the intuitionistic fuzzy topology structure,
tx1* ={(a,a):t<r>12 }U{ (4a,):rel}isnotIF-To

Theorem 5.6 Let (X, 7 ) be a fuzzy topological space. Then:
(X, X 17)is IF T, < (X,7)is FT, ,i=12,3, 4.

Proof. As a sample we prove the cases i=1,2
1) For i =1. Necessity follows from theorem (4.2).

Conversely, let (X, 7 )be a FT,, X, 4 beany IFPin (X,zx1*). Then

—1

Xap) = (X5 X5 UXy ) = (X, X5) = X,y SiNCE (X, 7 )iSFT,,

hence (X,z%17%)is IF-Ty.

if) For i =2. Necessity follows from theorem (4.5).

Conversely, let (X,z)isa FT, , X, 5 & Y(,..) Where (X, 5, Y., are

IFPS in X). Thenx, ¢y, AX,¢'y, =(3 0O, ,0, er such that
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O, ¢ O, )and (3 Oxﬁ, Oyy € 7 such that Oxﬁ q Oyy ). Now take
o, =0, NO, andO, =0, NO, .Then O,y , =(O; .0, )and

Oy, =(0;, 0, ) e rx1*suchthat O, ,q O, . Theresultholds.

Lemma 5.7
Let (X, 7 ) be a fuzzy topological space and (X, 1* %) be the second
IBTF-topological space induced by r (example 2.12). Then for any IFS

A=(A,A,) we have:

) A=(A,AUA),

i) A" =(ANAA),

i) X, ., =(X,,X,), where the closure of A ,x,and interior of A,are

with respecttoz .

Proof. Follows from theorem (2.16), (2.17).

Theorem 5.8

Let (X, 7 ) be a fuzzy topological space. Then (X, 1™ %z )elF-Rg
= (X,7)eFRo.

Proof. It is clear.

The following example shows that the converse of the above theorem
may not be true.

Example 5.9 Let X ={x,y,z }and let,

T= { X, 0, (X051 Yor 20 ) (Xos1 Yos120)s (X055 Yor Zos)s (Xos» Yos» Zos) }be a
fuzzy topology on X and,

7% = { X, (%5 Y2, 2): (o Yos 22)s (Xass Yis Zas)s (Xass Yosi Zos) |- Then
(X ,7) is FR3. But the intuitionistic fuzzy topological space

(X, 1% %7) is not IF-Rq.

Theorem 5.10 Let (X, 7 ) be a fuzzy topological space. Then:

i) (X, 1*%z)isIF-To = (X,7)is FTg,

i) (X, 1" %7)isIF-Ty < (X,7)is FTy.

Proof. It is clear..

Note: The converse of i) of the above theorem my not be true in general,

this can be shown by example (4.6), where (X, 7 ) isFT,. But (X,1* X7)
is not IF-T.

Theorem 5.11
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Let (X, 7 ) be a fuzzy topological space. Then (X,z ) is FT, =(X,1* %7)
isIF-T.,i=2.3.

Proof. For i=2. Let (X,7) be a FT,, Xapy ¥ Vo) Then x, ¢y, A X, o
y,implies 30, , O, er suchthat O, ¢/ O, and 3 Oxﬂ,Oyy € r such
that O, ¢’ O, . Now take, o,, =0, N0, and O, =0, NO, ,then
Oy =(Of Oxﬂ) el x7,0,,4 =(O;y, 0,)€ I * %z such that

Oy & wa ,and so (X, 1% X7)is IF-T,. The rest case is similar.

Note. The example (4.7) shows that the converse of the above theorem
may not be true in general.
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