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Boundary value problem for fractional neutral differential 

equations with infinite delay 

 

Mohammed S. Abdo   

Department of Mathematics, Hodeidah University, Al-Hudaydah, Yemen  

E-mail:msabdo@hoduniv.net.ye 

Abstract 

In this article, we develop and extend some qualitative analyses of a class 

of neutral functional differential equations involving a Caputo fractional 

derivative over the infinite delay period. The existence and uniqueness 

results are proved based on an equivalent fractional integral equation 

with the help of Banach contraction principle and Schauder's fixed point 

theorem. 

Keywords: Caputo fractional derivative; Neutral functional 

differential equation; Existence of  solution; Fixed point theorem. 

Introduction 

The existence of solutions to boundary value problems (BVPs) for 

fractional functional differential equations (FFDEs) with finite delay 

have been extensively studied, see [4-8,13] and references therein. 

However, research for the existence of solutions for the BVPs of FDEs 

with infinite delay proceeded very slowly. Recently, Yong et al., in [12] 

investigated the existence of positive solution for floquet BVP 

concerning FFDE with finite delay  

0
( ) ( , ), [0, ],c

ty t f t y t b

  D  

0 ,bAy y    

where  1A    and  0b    with  0 1, 
0

c 

D   is the Caputo's fractional 

derivative of order  , :[0, ] [ ,0] Rf b C r   is a given function 

satisfying some assumptions, and  [ ,0].C r    Their results were 

obtained by using two fixed point theorems (FPTs) on appropriate cones. 

Neutral FFDEs basically appeared as models of electrical networks 

arising in high-speed computer systems, these problems are used to 

interconnect switching circuits. For more details on such Neutral FFDEs, 

we advise looking at the following papers [8,9,11,14-19,21], and 

references therein. 

http://ajobas.com/
http://ajobas.com/
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Motivated by the above works, and inspired by [12], this paper is 

concerned with the existence and uniqueness of the solution of the BVP 

for nonlinear neutral FFDEs with an infinite delay of the type  

10
[ ( ) ( , )] ( , ), [0, ],c

t ty t g t y f t y t J b

    D       (1) 

 

0 2, on ( ,0],by y J     B                 (2) 

where  0 1,  1,  0,b 
0

c 

D   is the Caputo fractional derivative of 

order  , 1, :f g J R B   are appropriate functions contains some 

hypotheses that will be specified later, 2: RJ   in the phase spaceB , 

and  ( ) ( )ty y t     for  0.   

In this paper, our main objectives are highlighted as follows: 

 Study the existence and uniqueness results of (1)-(2) with infinite 

delay. 

 We deduce that the equivalent operator has a fixed point, it means 

that the problem (1)-(2) has one solution, which is also a unique 

solution. 

 The used techniques to demonstrate the existence and uniqueness 

results are a variety of tools such as fractional calculus, Hólder 

inequality, Lebesgue dominated convergence theorem, Arzelá-Ascoli 

theorem, Banach's and Schauder's FPTs (fixed point theorems). 

 

Preliminaries 

 

This section is devoted to recall some notaion, basic definitions and 

preliminary facts from fractional calculus theory and nonlinear analysis 

which will be used throughout this paper. 

Let  1 : [0, ],J b 2 : ( ,0],J   and  : ( , ],J b  ( 0).b  We denote by  

1( ,R)C J   the Banach space of all continuous real functions defined on  

1J   endowed with the norm  1sup{ ( ) : }
C

y y t t J  for any  

1( ,R),y C J   and let  1( ,R)p JL (1 )p    the set of those Lebesgue 

measurable functions  y   on  1J   such that 

 
1

1

( ) .
p

p

p

J
y y t dt  L

 

For any  1t J   and  : Ry J    is continuous, we denote by  

2: Rty J  the element of phase space B defined as 
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2( ) ( ), for all .ty y t J      

 

Also we consider the space  

2 14 1{ : R; | , | ( ,R)},J Jy J y y C J   G B  

where 
1

|Jy is the restriction of  y to 1.J  

Definition2.1. [2]. Let  0    be a fixed number. The left sided 

Riemann-Liouville fractional integral of order     of a function  

1: Ry J    is defined by 

1

0 0

1
( ) ( ) ( ) ,   0,

( )

t

y t t y d t   




  
 I  

provided that the right hand side is pointwise defined on 1.J  

Definition2.2. [3]. The left sided Riemann-Liouville derivative of order

 (0 1)    for a function  1

1( ,R)y JL can be written as 

1

0 00

1
( ) ( ) ( ) ( ),   0.

(1 )

td
y t t y d y t t

dt

   




 

   
  D DI  

Definition2.3. [3]. The left sided Caputo derivative of order  

(0 1)   for a function  1

1( ,R)y JC  is defined by 

1

0 00

1
( ) ( ) ( ) ( ),   0.

(1 )

t
c y t t y d y t t   





 

    
  D I D  

Remark 2.1. 

i) Let  1n n   ( N).  Then the relationship between the 

Caputo derivative and the Riemann-Liouville fractional 

derivative of order     is given by 
( )1

0 0
0

(0)
( ) ( ) ,   0,

( 1)

kn
c k

k

y
y t y t t t

k

  


 






  
  

D D  

where  [ ] 1.n     In particular, if  0 1,    then 

0 0

(0)
( ) ( ) ,   0.

(1 )

c y
y t y t t t  


 

  
 

D D  

ii) If  Nn    and the classical derivative
( ) ( )ny t  of order  n   

exists, then 
( )

0
( ) ( ),   0.c ny t y t t

  D  

iii) The Caputo fractional derivative for every constant function 

is equal to zero. 

Lemma 2.1. [3]. Let 0  and 1

1( ,R).y JL Then  
0 0

( ) ( ),y t y t 

  D I
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1.t J Moreover, if 0 1,  then  
0 0

( ) ( ) (0),c y t y t y 

   I D 1.t J  

Definition2.4. A function  4y G  is said to be a solution of the problem 

(1)-(2) if  y satisfies the Neutral FFDE  
0

[ ( ) ( , )] ( , ),c

t ty t g t y f t y

  D

1,t J where 
0

( , )c

tg t y

D exists, and the following condition  

0 by y   B  holds too. 

Definition2.5. [20]. A linear topological space of functions from  2J   

into  R,  with seminorm ,
B

 is called an admissible phase space if  B has 

the following properties: 

 (H1) If :y J R is continuous on 1J and 0y B,then for every  

1t J the following conditions hold: 

a. ;ty B  

b. ( ) ,ty t y
B

H where  0H is a constant, and  

(0) 
B

H   for all  B; 

c. 0
0

( ) sup ( ) ( ) ,t
t

y K t y M t y



 

 
B B

where  

, :[0, ) [0, )K M    with K continuous and M   

locally bounded, such that ,K M are independent of  

(.),y where 1sup{ ( ) : }bK K t t J  and  

1sup{ ( ) : }.bM M t t J   

(H2) For the function  (.)y in (H1), the function  tt y is continuous 

from  1J into  B. 

(H3) The space B  is complete. 

Lemma 2.2. [21] (Hölder's inequality). Assume that , 1p q  and  

1 1 1.
p q
  If ([ , ],R)pf a bL and  ([ , ],R).qg a bL   Then Hölder's 

inequality for integrals states that 

   
1 1

( ) ( ) ( ) ( ) .
p qb b bp q

a a a
f t g t dt f t dt g t dt    
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Main Results 

 

In this section, we are concerned with the existence and uniqueness of 

solution of the BVP for the Neutral FFDE (1)-(2). The following 

assumptions will be used in the sequel. 

(E1) There exists a 0fL  such that  

1 2 1 2 1 1 2( , ) ( , ) ,   ,  , .ff t y f t y L y y t J y y    
B

B  

(E2) There exists a 0gL  such that 

1 2 1 2 1 1 2( , ) ( , ) ,   ,  , .gg t y g t y L y y t J y y    
B

B  

(E3)  The function ( , ) : Rf t  B is continuous for every  1,t J  and for 

every x B, the function  1( , ) : Rf x J  is strongly measurable. 

(E4)  There exist functions 1( ,R),pm JL 1p


 and a continuously 

nondecreasing function :[0, ) [0, )     such that, for each  1t J   

and  ,y B  

( , ) ( ) ( ).f t y m t y 
B

 

(E5) g  is completely continuous and for any bounded set in  4G ,  the set  

{ ( , ) : }t tt g t y y B is equicontinuous in  1( ,R)C J and there exist 

constants  1 2(0,1), [0, )c c   such that, for  1t J and y B  

1 2( , ) .g t y c y c 
B

 

 
Equivalent integral equation 

 

In this subsection, we need the following auxiliary lemma to prove our 

results on the problem (1)-(2): 

Lemma 3.1.  A solution ( )y t of the nonlinear neutral FFDE (1)-(2) on  

1J is given by 

11
0( ) 1

11 1
0 11 ( )

11 1
0( )

( , ) ( ) ( , ) 0,                                    

( , ) ( ) ( , ) (0) ,   ,                        

( ) ( , ) ( )

( )

( )

(

byt
t

b
b

b t
b t

g t y t f y d g

g b y b f y d t J

y t g b t y b t f



  



 



 

  

   





 



 


 







  

    

    

1 1
( 1) ( 1)

( )11
0 2( )

( , )                                    

0, ( , )                                                         

( ) ( , ) (0) ,   .   (3.1)            

)

( ) (

)

by

b

tb

y d

g g b y

b f y d t J





   



 

 

   



 



 

 

               










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Proof.Firstly, by (E3), it will be easy show that  

1

0
( ) ( , ) .

t

t f y d

                                                     (3.2) 

Applying the operator 
0



I on both sides of the equation (1), we obtain 

0 0 0
 ( ) ( , ) ( , ).( )c

t ty t g t y f t y  

   I D I  

In view of Lemma 2.1and Remark 2.1, the solution of equation (1) can be 

written as 

0

1

0

( ) ( , ) (0) (0, )

1
( ) ( , ) .

( )

t

t

y t g t y y g y

t f y d

  




  

 
 

                                   (3.3) 

By the condition (2), we have  (0) ( ) (0),y y b   it follows from (3.3) 

that 

0

1

0

1
(0) ( , ) (0, )

1

1
( ) ( , ) (0) .

( )

(

)

b

b

y g b y g y

b f y d





   




 


  
 

                      (3.4) 

Also, we have 

0 .by
y






                                                   (3.5) 

From (3.3), (3.4) and (3.5), we get 
11

0( )

1
1 1

11
0 1( )

( , ) ( ) ( , )                 

( ) 0, ( , )                     

( ) ( , ) (0) ,  

( ) (

)

b

t
t

y

b

b

g t y t f y d

y t g g b y

b f y d t J







  





  

   







 









  


  

   

          (3.6) 

Now, since  ,t b if  2 ,t J then  1.b t J   Thus from (2) and (3.6), we 

obtain 
11 1

0( )

( )1 1
( 1) ( 1)

11
0 2( )

( , ) ( ) ( , )

( ) 0, ( , )               

( ) ( , ) (0) ,           

( )

( ) (

)

b

b t
b t

y t

b

b

g b t y b t f y d

y t g g b y

b f y d t J



 

 

    





  

   


 



 









    


   

   

   (3.7) 

From (3.6) and (3.7), the 
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11

0( ) 1

11 1
0 11 ( )

11 1
0( )

( , ) ( ) ( , ) 0,                            

( , ) ( ) ( , ) (0) ,   ,               

( ) ( , ) ( ) ( , )         

( )

( )

( )

byt
t

b
b

b t
b t

g t y t f y d g

g b y b f y d t J

y t g b t y b t f y d



  



 



 

  

   

  



 



 


 







  

    

    

1 1
( 1) ( 1)

( )11
0 2( )

 (3.8)             

0, ( , )                                                

( ) ( , ) (0) ,    .                        

( ) (

)

by

b

tb

g g b y

b f y d t J



   



 
   



 



 








 


    
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i.e.  0 .by y     So this completes the proof. 

 
Existence Theorem 

 

In this part, we give the result of existence that depends on the Schauder 

FPT. 
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then there exists at least a solution to problem (1)-(2) on .J  
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with  0 .by y    By (3.10) and (3.11), we can writing  

( ) ( ) ( ),y t y t w t  for  1,t J which implies  ,t t ty y w   for every  
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Moreover, 0 0.w  Set  4 4: {w  G G such that  0 0}.w  For any  

4 ,w G  we define  

4
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C
w w w w t t J    

G B
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Thus, 
4

4( , )w 



G
G  is a Banach space. Let 4 4 4:  N G G be the operator 

defined by 
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                                                                                                         (3.14) 

Thus,  4
0

0.w N It is evident that the operator 4N has a fixed point is 

equivalent to 4


N that has a fixed point too, and so we go ahead to proving 

that 4


N has a fixed point. By Schauder's FPT, the fixed points of the  
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operator 
4


N are solutions of the nonlinear neutral FFDE (1)-(2). The 

proof will be divided into several steps. 

Step 1:
4


N is continuous. Let N{ }n nw  be a sequence such that  nw w  
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Thus, from the continuity of  f and the complete continuity of ,g  it 

follows from the Lebesgue dominated convergence theorem that  
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Therefore, the operator 4
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N is continuous. 
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                                                                                         (3.19) 

Now, by (E2), (E3) and use Hölder's inequality, the (3.15) becomes  
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r m
t t

e

 



  

 






 



   
  

   
  


   




 





 

where 0r   is defined as in Step 2,  
( 1) 1

1 ,
q

q
e

 
 and  

 
1

2 ( 1) 1 0.qe q      The conclusion is  
4 2 4 1( )( ) ( )( ) 0w t w t  N N   

as  2 1 0,t t   and since  w is arbitrary in  rB , this implies that the set  

4 rBN is equicontinuous. As consequence of the Arzela--Ascoli theorem 

with combining steps 1--3, we can conclude that 
4 4 4:  N G G  is 

continuous and completely continuous. 

To applying Schauder's FPT, we need to establish that there exists a 

closed convex subset B in 
4


G  such that

4 .B B 
 N For each positive 

integer  , we define  
4

4{ : },B w w 

  
G

G  then for each ,  it is 

easy to verify that B is closed, convex subsets of 
4.G  

We claim that there exists a positive integer   such that 
4 .B B 
 N  If 

this property is false, then for each positive integer ,  there is a function  

w B   such that
4 4( ) ,w B 
 N N  then 

4
4 ( )w t 



 
G

N   for some  

1t J   where t  denotes  t  depending on . However, by use the  
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preceding assumptions we have 

   

 

  

 

4
4

4
0

1

00

1

1 2
00

1 2

sup ( )( )

1
sup ( , ) ( ) ( , )

( )

0,

1
sup ( ) ( )

( )

.

( )

t b

t

t t
t b

b b

t

t t
t b

b b

w

w t

g t y w t f y w d

y w
g

c y w c t m d

y w
c c







   











  






  












 



 



 






    



  
 




    



   
   
 

 





G

B

B

N

N

 

From  (3.16)  we have     0 :b b bt t
y w K K M K      

B
 , which 

implies  
 0 .b b

b b

K K M

K K




  Hence 
  1 1 ,b b

y w  

  
 

 
 

B
B

it follows 

from the Hölder inequality that 

 

   
1

0

( 1)

1 2
00

1 2

0 1 2

1

( )
sup ( )

( )

1
( ))

1
( ) ( ( ) 2

( ).
( 1)

q

b b

t
q

b p
t b

b b b

bp

K K M

K c c t d m

c c

K K M K c c

b m K








  



 


  







 



 

 
   



 
    
 

 
      

 

 
 



B

B

 

By dividing  on both sides and taking upper limit as ,  we get, 

 1
1

1

1 1 ( 1) ( )
lim sup .

b

bp

c K

b m K



 

 

 

    
  

This is contrary to (3.9). Hence, for some positive integer  , we must 

have  
4 ,B B 
 N  i.e.

4 : .B B 
 N  
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An application of Schauder FPT shows that there exists at least a fixed 

point w of 
4


N  in  

4.G  Thus, y y w  is a fixed point of 4N  in 4G   

which is the solution to (1)-(2) on ,J  and the proof is completed. 

 

Uniqueness Theorem 

In this portion, we give the result of uniqueness that depends on the 

Banach FPT. 

Theorem3.2. Assume that the conditions (E1) and (E2) are satisfied. 

Moreover, if  

2 1,
( 1)

g f b

b
L L K





 
  
  

                                                          (3.20) 

where 1sup{ ( ) : },bK K t t J  then the nonlinear Neutral FFDE (1)-(2) 

has a unique solution on .J  

Proof. Consider the operator 
4 4 4:  N G G defined by Theorem 3.1. 

Here, the Banach FPT is concerned with proving that 
4


N has a fixed 

point. Since the operator 
4


N  is well defined, it is sufficient to prove that  

4 4 4:  N G G is a contraction mapping. Indeed, in view of (E1), (E2) 

and (3.14), then for each 
4,w  G and for any 1,t J we have 

 

4 4

1

0

1

0

( )( ) ( )( )

( , ) ( , )

1
( ) ( , ) ( , )

( )

0, 0,

1
( ) .

( )

( ) ( )

t t t t

t

b b b b

g t t b b

t

f

w t t

g t y w g t y

t f y w f y d

y w y
g g

L w w

t L w d



   



 





    


  

 

 

  


 







   

    


   
 

   

  






B B

B

N N

 

 

From (H1) and (3.13), for any  1,t J we have  

4

.t t bw K w    
B G

  Hence 

4
4 4( )( ) ( )( ) 2 .

( 1)
g f b

b
w t t L L K w



 




   
    

  
G

N N  

which implies  
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44
4 4 2 .

( 1)
g f b

b
w L L K w



 




   
    

  
GG

N N  

It follows from (3.20) that 
4


N is a contraction operator. As a consequence 

of the Banach contraction principle, we can conclude that
4


N has a unique 

fixed point 
4w G which is just the unique solution to the integral 

equation (3.12) on 1.J Set ,y y w  then 4N has a unique fixed point 

4y G  that is the unique solution of the problem (1)-(2) on .J  
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